Функции электронного управления системами автомобиля. Функции электронного управления системами автомобиля с бензиновым двигателем. Как работает система ABS

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Каждое следующее поколение транспортных средств с течением времени стает все больше компьютеризованным, вытесняя механические системы и постепенно меняя их на электронные. И если еще пару десятков лет назад любой водитель мог собственноручно поменять сгоревшую лампу в фаре, то нынче непрофессиональное вмешательство в работу автоэлектроники, которой в разной степени оборудованы современные версии авто, может повлечь самые серьезные и неотвратимые сбои в ее работе.

Либо же по причине замыкания проводки может произойти возгорание и уничтожение транспортного средства за считанные минуты, что, в принципе, понятно, ведь все новое электронное оборудование состоит из множества связанных узлов. Поэтому каждый владелец, бережно относящийся к своему авто, ремонт электронного оборудования должен доверить только профи, которыми и являются все сотрудники нашего автотехцентра.

Диагностика ЭБУ в автоцентре Митино

Системы электронного оборудования – важная составная начинки современного автомобиля. Они контролируются электронными блоками управления (ЭБУ) и необходимы для регулировки работы почти всех автомобильных систем.

Диагностика ЭБУ, как правило, проводится непосредственно на транспортном средстве. В нее входит диагностика сканером, проверка режимов включения в блоках управления и проверка работы главных функций ЭБУ (управление бензонасосом, главным реле, форсунками впрыска, зажиганием и др.).Дилерские центры не занимаются ремонтом автоэлектроники, поэтому использование диагностического высокотехнологичного оборудования в сочетании с опытом высококвалифицированного персонала автоцентра Митино – залог своевременного выявления поломок и их качественного устранения.

Причины неисправностей и ремонт ЭБУ

Обычно ЭБУ сбиваются с нормального режима работы из-за перенапряжения или негативного внешнего влияния, типа перегрева, вибрации, коррозии, влаги либо механического повреждения электронных блоков управления. Часто от таких негативных факторов страдает АБС (антиблокировочная система тормозов) и коммутационный блок BSI. Например, нам нередко приходится делать ремонт BSI Пежо 307 или работать с автомобилями Опель Вектра, ремонт АБС которых поставил в затруднительное положение мастеров других сервисов.

Здесь необходимо напомнить, что ремонт ЭБУ Опель Астра, Вектра, Корса, автовладелец просто обязан делать с течением времени эксплуатации техсредства. Из-за заводского расположения блока в отсеке двигателя, где он поддается постоянным вибрациям, появляются ошибки в данных управления разнообразными датчиками. Технология ремонта ЭБУ, которая применяется в автотехцентре Митино, полностью устраняет подобные проблемы.

Распространенные неполадки панели приборов и устранение их в автоцентре Митино

Современные варианты приборных панелей на автомобилях оснащены внутри множеством электронных элементов, в которых иногда возникают неисправности. Из наиболее частых, с которыми с легкостью справляются наши мастера, можно выделить мигание либо выключение подсветки панели приборов, неисправную работу спидометра и тахометра при нормально поступающем сигнале.

В автомобилях Skoda, Renault, VW, Opel нередко появляются проблемы с информационным ЖК-дисплеем, требующие немедленного вмешательства специалистов. А ремонт панели приборов Рено Сценик усложняется наличием газоразрядного индикатора панелей, который снять, избежав разгерметизации, может только профи.

Многие автовладельцы при малейшей неисправности панели сразу меняют ее на новую. Однако сервисные возможности автотехцентра Митино сегодня таковы, что ремонт панели приборов – это уже не проблема, а услуга, позволяющая автовладельцу существенно сэкономить.

Определяясь с выбором подходящего сервиса, помните, что наш профессионализм, опыт и уважительное отношение к каждому клиенту, которыми не всегда могут похвастать другие ремонтные компании, – залог самого качественного ремонта Вашего автомобиля.

Применение электронных систем автоматического управления (ЭСАУ) позволяет снизить расход топлива и токсичность отрабо­тавших газов, повысить мощность двигателя, активную безопасность автомобиля, улучшить условия работы водителя.

6.1. ЭСАУ топливоподачей бензиновых двигателей

По типу топливоподачи ЭСАУ делятся на ЭСАУ системами впрыска (непосредственно в камеру сгорания или во впускной тракт) и ЭСАУ карбюраторными системами.

Системы с непосредственным впрыском мало применяются из-за сложности их конструкции. Наибольшее распространение получили системы впрыска во впускной тракт, разделяющиеся на системы с впрыском в зону впускных клапанов и системы с центральным впрыском.

ЭСАУ топливоподачей могут осуществлять управление аппаратным и программным методами.

Аппаратный метод реализации управления называется «жесткой» логикой. При исользовании данного метода алгоритм работы системы управления полностью определяется принципиальной схемой этой системы.

При программном управлении алгоритм управления зависит не только от принципиальной схемы системы управления,но и от информации (программы), записанной в постоянное записывающее устройство (ПЗУ). Например, ЭСАУ топливоподачей программного типа работает следующим образом. С различных датчиков, установленных на двигателе(датчиков частоты вращения коленчатого вала, угла открытия дроссельной заслонки, крутящего момента), ЭСАУ получает информацию и преобразует ее в код, который поступает на вход ПЗУ.В соответствии с этим кодом на выходе ПЗУ появляется информация, используемая для управления форсунками или карбюратором.

ЭСАУ впрыском топлива (система электронного впрыска) обеспечивает необходимую длительность интервала, в течении которого форсунка остается открытой. Так как электрический топливный насос поддерживает постоянное давление (≈ 0,2Мпа),этот интервал определяет количество поступающего в цилиндры топлива. Длительность интервала задается в зависимости от угла открытия дроссельной заслонки, частоты вращения коленчатого вала, температуры охлаждающей жидкости и абсолютного давления.

В электронных карбюраторных системах дозирование горючей смеси осуществляется по химическому составу отработавших газов (рис 6.1)Для этого в выпускную систему двигателя устанавливается датчик кислорода – λ – зонд. Этот датчик реагирует на процентное содержание кислорода в отработавших газах пропорциональное коэффициенту избытка воздуха. При нормальном процент­ном содержании кислорода каталитический нейтрализатор, установ­ленный в выпускном тракте, обеспечивает качественную очистку от­работавших газов (ОГ) от токсичных компонентов СО, СН, NО.

Система работает следующим образом. Если дозирующее уст­ройство вырабатывает стехиометрический состав смеси, то на вы­ходе λ - зонда, установленного в выпускном тракте двигателя, появ­ляется напряжение, равное опорному напряжению U оп. В этом слу­чае на выходе схемы сравнения напряжение U ош равно нулю и до­зирующее устройство продолжает вырабатывать прежний стехио­метрический состав. Если состав смеси будет отличен от стехиометрического, то по сигналу со схемы сравнения дозирующее устройст­во изменяет состав смеси до тех пор, пока он не станет опять стехиометрическим.

В качестве λ.-зонда чаще всего используются циркониевые дат­чики кислорода, недостатком которых является то, что их ми­нимальная рабочая температура составляет 350 °С. Поэтому они ли­бо не используются при прогреве двигателя, либо имеют элект­рический подогрев.

Рис. 6.1. Структурная схема электронной карбюраторной системы

Современный автомобиль состоит из четырех основных агрегатов: двигателя внутреннего сгорания (ДВС), кузова, шасси и ходовой части. Эти агрегаты состоят из различных функциональных систем, которые обеспечивают выполнение глав­ной функции автомобиля - перевозку грузов и пассажиров. Для того чтобы пере­возки были безопасными, а для пассажиров и комфортными, чтобы агрегаты, узлы, блоки, системы работали безотказно, на автомобиле широко используются электротехнические устройства и средства электрон пой автоматики.

В последние годы техническая оснащенность автомобилей электронной бор­товой автоматикой значительно возрастает.

Совсем недавно микропроцессорные системы зажигания, электронные систе­мы управления гидравлическими тормозами, системы впрыска бензина, бортовая сам oil и а гностика считались последними достижениями в области автомобильного аппарате и приборостроения. Теперь их относят к классическим системам и устанавливают почти на каждый серийный автомобиль.

В наши дни на вновь разрабатываемые модели автомобилей дополнительно на­чинают устанавливать совершенно нетрадиционные бортовые автоматические си­стемы, к которым относятся: информационная система водителя с микропроцес­сорным обеспечением; спутниковая навигационно-поисковая система; радарные и ультразвуковые системы зашиты автомобиля от столкновений и угона; системы повышения безопасности и комфорта людей в салоне; система круиз-контроля; система «электронная карта»; мультиплексная электропроводка.

Параллельно проводятся поиски более эффективных компьютерных техноло­гий обработки информации в бортовых электронных системах. Разработаны и уже находят применение так называемые лингвистические функциональные преобра­зователи, работающие с нечеткими подмножествами лингвистических перемен­ных, выраженных отдельными словами или целыми предложениями на естествен­ном (английском) или искусственном (компьютерном) языке. При некотором усложнении логических и арифметических операций в микро ЭВМ это позволяет повысить точность и скорость (быстроту) обработки сигналов. Как следствие, зна­чительно усложнился интерфейс, и возникла необходимость в ведении CAN- пpoтокола в мультиплексную систему.

На базе электронных систем автоматического управления двигателем (ЭСАУ-Д) и тормозами (ЭСАУ-Т) разработана и уже применяется гироскопическая система VDC для повышения курсовой устойчивости автомобиля на дороге в сложных условиях движения. Система VDC работает по принципу запрограммированного под нештатные условия движения совместного воздействия на крутящий момент ДВС (посредством системы ASR) и на антиблокировочную систему тормозов ABS, чем исключается боковой увод (снос) автомобиля при поворотах на большой скорости или на скользкой дороге. Водителю в таком случае отводится роль активного наблюдателя, контролирующего н корректирующего поведение автомобиля.

Интенсивно ведутся научные исследования возможности применения электро­магнитных клапанов с электронным управлением в газораспределительном меха­низме (ГРМ) поршневого ДВС. Идею заменить классические механические кла­паны электромагнитными еще в 50-х гг. XX в. предложил профессор Московского автомобильно-дорожного института (МАДИ), доктор технических наук Владимир Митрофанович Архангельский. Что это дает поршневому ДВС, хорошо известно теоретически . Но практическая реализация идеи оказалась исключительно трудоемкой задачей, над решением которой работают специалисты многих зару­бежных фирм и отечественные разработчики. Теоретические и эксперименталь­ные исследования уже завершены. Теперь идут разработки конструкторских вари­антов исполнения ГРМ с электромагнитными клапанами.

Наряду с усовершенствованием автомобильных бензиновых ДВС все более ак­тивизируются работы по созданию экологически чистых силовых установок для электромобилей. Полагают, что достойной заменой городскому автомобилю мо­жет стать гибридный электромобиль, электронные системы управления которым также относятся к современным новациям в области автомобилестроения.

В современных условиях глобальным требованием к новейшим автомобиль­ным электрическим и электронным системам является неукоснительное исполне­ние международных стандартов OBD-II (США) и EOBD-II (EU), которые также продолжают совершенствоваться.

Помимо специфики выполняемых функций новейшие системы автомобиль­ной бортовой автоматики кардинально отличаются от классических, чисто элек­тронных систем широким разнообразием принципов действия входящих в них со­ставных подсистем. В зависимости от решаемой задачи в новую систему в качестве основных компонентов могут входить не только электрические и электронные узлы и блоки, по и механические, гидравлические, светооптические, ультразвуко­вые и любые прочие устройства, имеющие неэлектрическую природу функциони­рования. Их роль в реализации заданной функции управления главная, хотя все информационные процессы в системе реализуются на уровне электронных блоков управления (ЭБУ), а в новейших системах - в бортовых микропроцессорах. Такие крупные составные комплексы управления не могут относиться ни к механиче­ским, ни к электрическим, ни к электронным, ни к любым другим «чистым» по принципу действия системам. В этой связи новейшие системы автомобильной бортовой автоматики, устанавливаемые на концептуальные автомобили, получили повое название - автотронные системы.

Автотронная система, управляя неэлектрическими процессами через неэлектрическую периферию на выходе, сама управляется от сигналов, имеющих неэлек­трическую природу, которые формируются неэлектрической входной периферией.

Например, автотропная система VDC (управления курсовой устойчивостью движения автомобиля), функциональные взаимосвязи которой с водителем и до­рогой показаны на рис. 1.1, использует в качестве входной информации скорость движения, углы наклонения кузова, разность частот вращения колес, угол поворо­та руля, атмосферные условия, а в некоторых вариантах - давление в шинах и со­стояние дорожного покрытия.

Описание условных обозначений, принятых на рис 1.1.

1. Географические условия: извилистость дороги, спуски, подъемы, повороты, перекрестки дорог, переезды.

2. Дорожные условия: тип дорожного покрытия (гравий, бетон, асфальт); ас­фальт сухой, мокрый, обледенелый; освещение дороги; плотность транспортного потока.

3. Климатические условия: атмосферные - температура, влажность, давление; температура асфальта.

4. Техногенные условия: сцепление колес с дорогой но состоянию протекторов шин; скорость вращения колес; скорость рыскания; боковой увод автомобиля, бо­ковой увод колес, боковое ускорение.

A. Блок датчиков: угла поворота руля; угла поворота кузова автомобиля вокруг вертикальной оси (гироскоп); бокового ускорения.

B. УВР - управляющие реакции водителя, являющиеся откликом субъектив­ного мышления на дорожные условия движения; проявляются индивидуально в зависимости от физического и психического состояния человека.

C. Блок датчиков: температуры, давления, влажности в атмосфере, температу­ры асфальта (по давлению в шинах).

D. Блок колесных датчиков (ДК) ABS и вычисляемых в ЭБУ системы VDC неэлектрических входных параметров.

E. Центральный боковой компьютер (микропроцессор МП), в который интег­рированы все логические и вычислительные функции четырех автоматических си­стем управления VDC, ADS, ASR, ABS. Содержит оперативную (ОЗУ) и постоян­ную (ПЗУ) память, а также входные аналогово-цифровые (АЦП) и выходные цифроаналоговые (ЦАП) преобразователи.

F. Блок оконечных преобразователей электрических сигналов в неэлектрические воздействия:

а) ДИС/ВП - драйверы информационной системы водителя (ДИС) и визуаль­ный преобразователь (ВП) электрического сигнала в оптическое изображение;

б) ЭДД/КД - электродвигатель (ЭДД) и клапан (КД) демпфирования актив­ной подвески (системы ADS);

в) ЭДН/НД - электродвигатель (ЭДН) и нагнетатель (НД) высокого давления в системе VDC;

г) ЭДТ/ГК - электродвигатель (ЭДТ) и гидроклапаны (ГК) системы ABS;

д) ШЭД/ДР - шаговый электродвигатель (ШЭД) и дроссельная заслонка (ДР) системы ASR.

G. Блок водительских органов управления: ВИ - визуальные индикаторы (стрелочные, электронные, дисплей и пр.); РК - рулевое колесо; ПТ - педаль тормоза; ПГ -- педаль акселератора (газа).

Все это неэлектрические проявления условий движения автомобиля, которые с помощью входных неэлектрических преобразователей перерабатываются в неэ­лектрические информационные сигналы: скорость движения - в круговую часто­ту вращения колес; углы вертикального наклонения - в механические перемеще­ния инерционных элементов в гироскопическом устройстве; угол поворота руля - в движение (поворот) светомодулирующего (колирующего) диска; давле­ние в шинах - в прогиб упругой мембраны и т. д.

Полученные таким образом неэлектрические информационные сигналы по­средством входных датчиков (рис. 1.1, поз. А, С, D) преобразуются в электриче­ские сигналы: поворот кодирующего диска на руле - в цифровой электрический код; круговая частота вращения колес - в последовательность электрических им­пульсов с изменяющейся частотой следования; перемещение инерционных эле­ментов гироскопа, упругой мембраны датчика давления - в аналоговые электри­ческие сигналы, которые далее с помощью аналогово-цифровых преобразователей (АЦП) перерабатываются в цифровые электрические сигналы, пригодные для по­дачи на вход микропроцессора МП.

Микропроцессор - это центральный орган управления (мозг) автотронной си­стемы. Его главная функция заключается в преобразовании электрических инфор­мационных сигналов об условиях движения автомобиля, полученных от входной периферии, в электрические сигналы управления, несущие информацию об ин­тенсивности и последовательности неэлектрических воздействий на неэлектриче­ские органы управления. Такая информация формируется в микропроцессоре в виде кодовых последовательностей электрических импульсов, которые для непо­средственного управления неэлектрическими органами непригодны.

Для согласования энергетических уровней без нарушения информационного содержания на выходе микропроцессора реализуется обратное преобразование информационных сигналов из цифровой в аналоговую форму. Эту функцию вы­полняют цифроаналоговые преобразователи (ЦАПы), которые одновременно яв­ляются усилителями мощности аналоговых электрических сигналов.

Чтобы выполнить управляемое неэлектрическое воздействие на неэлектриче­ские органы управления, вслед за ЦАПами устанавливаются оконечные преобра­зователи электрических сигналов в механические или любые другие неэлектриче­ские воздействия. Оконечные преобразователи (блок F на рис. 1.1) являются вы­ходными исполнительными устройствами автотронной системы, но не являются ее информационным окончанием. В отличие от электронной системы автотрон­ная система включает в свой состав и неэлектрические объекты управления, кото­рые и являются оконечными потребителями информации. Применительно к рас­сматриваемой системе управления устойчивостью движения автомобиля, оконеч­ными потребителями информации являются: система подачи топлива в двигатель 4, тормозная система 2 автомобиля и информационная система водителя с визуа­льными индикаторами (ВИ) и оптическим (зрительным) каналом управления (ОКУ). Эти три системы представляют собой выходную исполнительную перифе­рию автотронной системы, которая (периферия) под автоматическим управлени­ем микропроцессора, при крайне ограниченном (посредством коррекции положе­ния руля) участии водителя, обеспечивает наиболее оптимальный режим движе­ния автомобиля в сложных дорожных условиях или в аварийной ситуации (более подробно система VDC описана в главе 8).

Другой пример - автотронное управление насос-форсунками, которые ис­пользуются в системах впрыска бензина под большим давлением непосредственно в камеру сгорания для реализации внутреннего смесеобразования. Начиная с 2000 года такие форсунки стали устанавливаться в двигателях экспериментальных легковых автомобилей фирмы TOYOTA (Япония).

Насос-форсунка (рис. 1.2), являясь гидромеханическим устройством, приво­дится в действие от кулачка 10 распределительного вала ДВС, а управляется от электронной системы S автотронного управления впрыском (ЭСАУ-В) посредст­вом быстродействующего электрогидравлического клапана 2.

Насос-форсунка является ярким примером составного компонента автотрон­ной системы. Входными неэлектрическими сигналами здесь служат: частота вра­щения и угловое положение распределительного вала; абсолютное давление (раз­режение) во впускном коллекторе; температура двигателя и положение водитель­ской педали газа. Эти неэлектрические величины с помощью соответствующих датчиков и АЦП преобразуются в числоимульсную последовательность электри­ческих сигналов и подаются на вход микропроцессора ЭСАУ-В. В микропроцес­соре путем математической обработки входных сигналов происходит формирова­ние последовательности управляющих импульсов для электрогидравлического клапана насос-форсунки.

В данном случае ЦАП на выходе микропроцессора не применяется, но управ­ляющие импульсы усиливаются в усилителе мощности и подаются на обмотку электромагнита гидроклапана 2. Гидроклапан представляет собой выходное ис­полнительное устройство автотронной системы. Однако объектом управления яв­ляется не гидрокланан, а точно отмеренная по массе и распределенная по време­ни струя 21 распыленного бензина, поступающая в объем цилиндра через диско­вый запорный клапан 17 форсунки. Управление струей позволяет получить так называемый послойный впрыск бензина, суть которого состоит в строго дозированной подаче топлива отдельными порциями и в строго определенное время. При этом за один цикл впрыска бензин подается не сплошной однородной струей, как в обычной форсунке с электронным управлением, а несколькими час­тями, каждая из которых образует «свой» коэффициент избытка воздуха р. В объе­ме цилиндра образуется послойная структура ТВ-смеси с разной концентрацией компонентов. Преимущество прямого послойного впрыска бензина состоит в том, что в первый момент воспламенения в зоне центрального электрода 19 свечи за­жигания 18 имеет место стехиометрическая (нормальная) ТВ-смесь с коэффици­ентом (3=1), которая легко возгорается. Далее процесс горения бензина при зна­чительном избытке кислорода (р = 2,0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Такой процесс сгорания ТВ-смеси позволяет получить значительную экономию бензина (до 35%), понизить выброс в атмосферу угарного газа СО и углеводородов СН, а также увеличить уде­льную мощность двигателя.

1 - фрагмент блока цилиндров в зоне камеры сгорания; 2 - магнитоэлектрический гидроклапан в сливном канале; 3 - главная бензомагистраль; 4 - подающая бензомагистраль; 5 - сливной канал (обратная бензомагистраль); 6 - корпус насос-форсунки; 7 - возвратная пружина плунжера; 8 - опорная тарелочка пружины плунжера; 9 - толкатель плунжера; 10 - кулачок распредвала; 11- запорное кольцо опорной тарелочки; 12 - поршень плунжерного насоса; 13 - рабочая полость насос-форсунки; 14 - гидромеханическая форсунка закрытого типа высокого давления (100-150 бар);

15 - перепускной канал из полости плунжерного насоса в полость форсунки; 16 - возвратная пружина запорного клапана форсунки; 17 - дисковый запорный клапан форсунки; 18 - свеча зажигания (СЗ); 19 - центральный электрод СЗ; 20 - боковой электрод; 21 - конус (струя) распыленного бензина; L - ход плунжера.

Из приведенных примеров очевидно, что автотронная система является со­вокупностью самых различных по принципу действия устройств, объединенных в единый комплекс с целью выполнения требуемой специфической функции управления, регулирования или текущего контроля на борту автомобиля. Совре­менные подходы автомобилестроителей к комплексному решению задач автома­тического контроля, управления и регулирования приводят к тому, что подав­ляющее большинство новейших автомобильных систем бортовой автоматики являются автотронными, входными воздействиями для которых являются неэлек­трические проявления режима работы, условий движения, дорожных ситуаций и других факторов, а выходными потребителями информации (объектами управле­ния) - неэлектрические узлы, блоки, устройства, газообразные и жидкостные среды, имеющие место на автомобиле, и сам водитель. Это принципиальные от­личия автотронных систем от чисто электронных и электрических.

Говоря о тенденциях и перспективах развития автомобильных бортовых устройств, следует отметить, что традиционно наиболее интенсивно совершен­ствуются узлы, агрегаты и схемы классического электрооборудования. Уже ско­ро в бортсеть автомобиля будет внедрено второе рабочее напряжение 42 вольта. Это связано с необходимостью повышения напряжения электропитания для новейших энергоемких потребителей, таких как силовые электромагнитные гидроклапаны, электромагнитные соленоиды силовых исполнительных уст­ройств, мощные электродвигатели, силовые электронные коммутаторы, мульти­плексная электропроводка и т. п. Ясно, что при повышении напряжения элек­тропитания соответственно уменьшаются токи в цепях потребителей, что приводит к более надежной и экономичной их работе. Но сразу переводить все электропотребители на новое напряжение, как это было сделано при переходе с 6 на 12 вольт, в настоящее время нерационально. Причина тому - выпуск 12-вольтовых потребителей огромными сериями, технологическая оснащенность производства и, главное, все эксплуатируемые в настоящее время автомобили оборудованы 12-вольтовьши потребителями (электролампы, электродвигатели, электронное и микрокомпьютерное оснащение, аудио-, радио-, видеоаппарату­ра, бортовая самодиагностика и т. п.).

Единой стратегии перевода бортсети автомобиля на более высокое напряжение пока нет. Полагают, что некоторое время на автомобиле будет два напряжения: 12 вольт - для классического электрооборудования, и 42 вольта - для новейших мощных потребителей. Такой подход широко используется па многотонных гру­зовых автомобилях, где мощные электропотребители 24-вольтовые, а освеще­ние - от 12 вольт. Еще более яркий пример - электромобили. Здесь главная тя­говая аккумуляторная батарея, управляющий контроллер и тяговый электродвига­тель рассчитаны па напряжение 120...380 В и соединены между собой отдельными цепями. При этом бортсеть остается 12-вольтовой.

Из приведенных примеров ясно, что функциональное многообразие бортовых электрических устройств неизбежно приводит к необходимости применения на автомобиле нескольких первичных источников электроэнергии с различными ра­бочими напряжениями. При этом не исключено, что будет использоваться и пере­менное синусоидальное напряжение для специальных потребителей.

Под новые напряжения в первую очередь будут модернизированы бортовые электромашины. Уже в наши дни значительно видоизменен электростартер. В нем не применяется последовательное возбуждение, которое заменено возбуждением от постоянных магнитов. Жесткая механическая характеристика электродвигателя +12В стартера согласовывается с пусковым моментом ДВС посредством плане­тарного редуктора (редуктора Джемса). Давно нет коллекторных генераторов по­стоянного тока, их заменили многофазные синусоидальные генераторы с полу­проводниковыми выпрямителями и электронными регуляторами напряжения. Но и такие генераторы могут значительно видоизмениться при появлении второго ра­бочего напряжения или если необходимость в высоковольтном переменном на­пряжении станет реальной.

Ведутся также разработки по созданию универсальной электрической машины, так называемого «стартер-генератора», которая сможет выполнять две функции: запуск ДВС и подачу электроэнергии в бортсеть после запуска ДВС.

Современная микропроцессорная система зажигания с низкоуровневым многоканальным распределением энергии по свечам является наиболее совер­шенным решением проблемы принудительного электроискрового воспламенения ТВ-смеси в цилиндрах поршневого ДВС. Но и это не предел достижений. Уже ис­пытаны лазерные свечи зажигания, которые работают непосредственно от электронной схе­мы управления без промежуточного энергона­копителя. Это позволит значительно повысить надежность и КПД системы зажигания, а так­же избавить ее от высокочастотных электроис­кровых помех на другие узлы и блоки бортовой электронной автоматики. Электронной схемой управления может стать магнитный модулятор сжатия, работающий на ферромагнитных сер­дечниках насыщения. Схема такого модулятора показана на рис. 1.3, основным элементом в которой является высоковольтный трансфор­матор с насыщающимися сердечниками.

Если магнитопровод трансформатора ввести в режим насыщения, то его коэф­фициент трансформации резко падает и энергия из первичной обмотки во вто­ричную не трансформируется.

Выходной трансформатор имеет два изолированных друг от друга магнитопровода - М, и М 2 , охваченных общей первичной обмоткой W,. Каждый магнитопровод оснащен отдельной обмоткой управления (W B " и W B ") и отдельной двухвыводной вторичной обмоткой (W 2 " и W 2 ")

Когда по управляющей обмотке W," протекает ток, достаточный для насыще­ния сердечника М, а обмотка W B " обесточена, то высокое напряжение будет на­водиться только во вторичной обмотке W 2 ". Если обесточить управляющую об­мотку W EJ " и пропустить ток насыщения по обмотке W B ", то насытится сердечник М и высокое напряжение будет трансформировано только в обмотку W 2 .

Система зажигания с трансформатором насыщения обладает высокой надеж­ностью, малыми габаритами и весом.

В заключение следует отметить, что не все известные разработки бортовых си­стем вышли из стадии экспериментальных исследований. Они используются в основном на фирменных моделях спортивных и концептуальных автомобилей. Но, как и прежде, почти все новации, испытанные на концепткарах, рано или поздно начинают применяться на серийных автомобилях.

Таковы тенденции развития автомобильной техники и, в частности, систем бортового электрического, электронного и автотронного оборудования.

Рис. 1.3. Магнитный модулятор системы зажигания

Автомобилей на дорогах становится все больше, управлять им в плотном потоке становится все сложнее. Кроме того, в движении принимает участие большое количество молодых водителей, не обладающих достаточным опытом управления автомобилем.

Для помощи водителю и для повышения безопасности дорожного движения разрабатывается большое количество электронных систем безопасности автомобилей.

Автомобильные системы безопасности

Все системы безопасности делятся на активные и пассивные:

  • назначение активных систем – предотвратить столкновения автомобилей;
  • пассивные системы безопасности снижают тяжесть последствий при аварии.

Обзор систем активной безопасности

Данный обзор – попытка перечислить и дать характеристику современным системам активной безопасности.

1. (АБС, ABS). Предотвращает проскальзывание колес во время торможения автомобиля. Часто (но не всегда) работа АБС сокращает тормозной путь автомобиля, особенно на скользкой дороге.

3. Система аварийного торможения (EBA, BAS). В случае быстро поднимает давление в тормозной системе. Используется вакуумный способ управления.

4. Система динамического контроля над торможением (DBS, HBB). Быстро поднимает давление при экстренном торможении, но способ реализации иной, гидравлический.

5. (EBD, EBV). Фактически это программное расширение последних поколений АБС. Тормозное усилие правильно распределяется между осями автомобиля, не допуская блокировки, в первую очередь, задней оси.

6. Электромеханическая тормозная система (ЕМВ). Тормозные механизмы на колесах активируются при помощи электродвигателей. На серийных автомобилях ещё не применяется.

7. (АСС). Сохраняет выбранную водителем скорость автомобиля, поддерживая при этом безопасную дистанцию до движущегося впереди автомобиля. Для поддержания дистанции система может изменять скорость автомобиля, воздействуя на тормоза, или дроссельную заслонку двигателя.

8. (Hill Holder, HAS). При трогании автомобиля на подъеме система не позволяет автомобилю откатываться назад. Даже при отпущенной педали тормоза давление в тормозной системе сохраняется и начинает уменьшаться при нажатии на педаль «газа».

9. (HDS, DAC). Сохраняет безопасную скорость автомобиля при движении на спусках. Включается водителем, но активируется при определенной крутизне спуска и достаточно малой скорости автомобиля.

10. (ASR, TRC, ASC, ETC,TCS). Не дает колесам автомобиля проскальзывать при наборе им скорости.

11. (APD, PDS). Позволяет обнаружить пешехода, поведение которого может привести к столкновению. При опасности оповещает водителя и включает тормозную систему.

12. (PTS, Park Assistant, OPS). Помогает водителю припарковать автомобиль в стесненных условиях. Некоторые разновидности систем выполняют эту работу в автоматическом или автоматизированном режиме.

13. (Area View, AVM). При помощи системы видеокамер, а точнее, синтезированного с них изображения на мониторе помогает управлять автомобилем в стесненных условиях.

14. . Берет управление автомобиля на себя в опасной ситуации для увода автомобиля из-под удара.

15. . Эффективно удерживает автомобиль на полосе движения, обозначенной линиями разметки.

16. . Контролируя наличие помех в «мертвых зонах» зеркал заднего вида помогает безопасно выполнить маневр перестроения.

17. . При помощи видеокамер, реагирующих на тепловое излучение предметов, на мониторе создается изображение, помогающее управлять автомобилем при недостаточной видимости.

18. . Реагирует на знаки ограничения скорости, доводит эту информацию до водителя.

19. . Выполняет мониторинг состояния водителя. Если, по мнению системы, водитель устал, она требует остановки и отдыха.

20. . При аварии, после первого столкновения включает тормозную систему автомобиля, чтобы избежать последующих столкновений.

21. . Наблюдает за обстановкой вокруг автомобиля и при необходимости принимает меры, призванные предотвратить аварию.



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»