Электронные системы автомобиля. Ремонт электронных систем Классификация электронных систем автомобиля

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Устройство ЭСАУ двигателем.

Ведущий производитель систем впрыска фирма Bosch.

Системы L-Jetronic - это система распределенного нефазированного впрыска топлива рис. 6.3. Она состоит из: 1 - топливный бак; 2 - 3 - топливный. фильтр; 4 - 5- форсунка; 6 - топливная рампа с регулятором давления топлива; 7- впускной трубопровод; 8- клапан холодного пуска; 9-датчик положения дроссельной заслонки; 10- датчик расхода воздуха; 11 - датчик кислорода (λ-зонд); 12 - термо­реле; 13 - 14 - 15- регулятор добавочного воздуха (регулятор холо­стого хода); 16 -аккумуляторная батарея; 17- выключатель зажигания.

Топливо из бензобака 1 насосом 2 через фильтр 3 подается под давлением 250 кПа в топливную рампу и распределяется по форсункам 5 . На конце топливной рампы расположен регулятор давления поддерживающий разность давления в рампе и впускном коллекторе на уровне 0,5 атм. Т.о, количество подаваемого топлива определяется дли­тельностью открытия форсунки. Остатки топлива возвращаются в бак по сливной магистрали. В БУ 4 поступают сигналы от датчика расхода воздуха 10, датчика положения дроссельной заслонки 9 по которым определяет нагрузка двигателя. Датчик положения дрос­сельной заслонки позволяет различать режим ХХ и полной нагрузки. Информация о частоте вращения КВ двигателя поступает от датчика-распределителя системы зажи­гания. Для обогащения смеси при пуске холодного двигателя ис­пользуется клапан холодного пуска 8, который управляется термо­реле 12. Термореле обеспечивает 8 с работы клапана при темпе­ратуре -20°С. Датчик температуры двигателя 13 подключенный к БУ позволяет обогащать смесь на режиме прогрева двигателя.

Управление частотой вращения на режиме ХХ осу­ществляется регулятором добавочного воздуха 15 с заслонкой управляемой биметаллической пластиной. Для корректировки качества рабочей смеси используется датчик кислорода 11.

Система L3-Jetronic (рис.6.4) является модификацией представленной системы. Отличие от L-Jetronic - БУ выпол­ненный в одном корпусе с датчиком расхода воздуха и располо­женный в моторном отсеке.

Конфигурация системы: 1 - топливный бак; 2 - электрический топливный насос; 3 - топливный фильтр; 4 - форсунка; 5 - топливная рампа; 6 - регулятор давления топ­лива; 7- впускной трубопровод; 8 - датчик положения дроссельной за­слонки; 9- датчик расхода воздуха; 10- электронный блок управления; 11 - 12 - датчик температуры двигателя; 13 - датчик-распределитель системы зажигания; 14 - регулятор добавочного воздуха (регулятор холостого хода); 15- аккумуляторная батарея; 16- выключатель зажигания



В системе используется алгоритмы диагностики датчиков и «усеченного» режима работы. В системе отсутствует клапан холод­ного пуска. Обогащение смеси при пуске холодного двигателя осуществляется увеличением подачи топлива через ос­новные форсунки.

Система LH-Jetronic (рис.6.5). Нагрузка двига­теля определяется датчиком массового расхода воздуха термоанемометрического типа. В отличие от датчика системы L-Jetronic, опре­деляющего объем проходящего воздуха этот датчик определяет непосредственно массу воздуха, и не требует дополнительной кор­ректировки по его плотности.

Рис. 6.5. Система LH-Jetronic:

Система представляет собой: 1 - топливный бак; 2- электрический топливный насос; 3 - топливный фильтр; 4 5 -форсунка; 6 - топливная рампа; 7 8- впускной трубопровод; 9-датчик положения дроссельной заслонки; 10 -датчик массового расхода воздуха; 11- датчик кислорода (λ - зонд); 12 - датчик температуры двигателя; 13 -датчик-распределитель системы зажигания; 14 - поворотный регулятор холостого хода; 15- аккумуляторная батарея; 16- выключатель зажигания

Для регулировки частоты вращения коленчатого вала на ХХ в системе LH-Jetronic используется поворотный клапан с приводом от реверсивного электродвигателя (трехпроводной). БУ периодически переключает направление вращения электродвига­теля, что предотвращает заброс клапана в любую из крайних пози­ций. Требуемое положение клапана регулируется изменением соотношения времени включения электродвигателя в различных на­правлениях.

Система KE-Jetronic (рис.6.6), является прототипом гидромеханической системы K-Jetronic, дополненной ЭБУ и датчи­ком кислорода. Система включает в себя: 1 - топливный бак; 2 - электрический топливный насос; 3 - топливный аккумулятор; 4 - топливный фильтр; 5 - регулятор начального давления; 6 - форсунка; 7 - впускной трубопровод; 8- клапан холодного пуска; 9 -дозатор-распределитель топлива; 10- датчик расхода воздуха; 11 - электрогидравлическое управляющее устройство; 12- датчик кисло­рода (λ -зонд); 13- термореле; 14 - датчик температуры двигателя; 15 - датчик-распределитель системы зажигания; 16- регулятор добавоч­ного воздуха (регулятор холостого хода); 17- электронный блок управле­ния; 18 - датчик положения дроссельной заслонки; 19 - аккумуляторная батарея; 20- выключатель зажигания.



В БУ поступают сигналы о положении паруса рас­ходомера, крайних положениях дроссельной заслонки, частоте вращения двигателя, температуре охлаждающей жидкости и со­держании кислорода в отработавших газах. Воздействие БУ на со­став рабочей смеси осуществляется с помощью электрогидравли­ческого управляющего устройства закрепленного на дозаторе-распределителе топлива (рис. 6.7, где: 1 - парус расходомера; 2 - дозатор-распределитель топлива; 3 - поступ­ление топлива от регулятора начального давление; 4 - подача топлива к форсункам; 5 - возврат топлива в регулятор начального давления; 6 - жиклер; 7 - верхняя камера дифференциального клапана; 8- нижняя камера дифференциального клапана; 9 - диафрагма; 10 - регулятор дав­ления; 11 - управляющая пластина; 12 - выпускной канал; 13 - электромагнит; 14 - воздушный зазор). Так для обогащения смеси по сигналу от БУ управляющая пластина 11 закрывает выпускной ка­нал 12 тем самым, снижая давление в нижних камерах дифферен­циального клапана 8. Мембраны 9 прогибаются вниз, и количество топлива поступающего к форсункам 4 увеличивается. Управляющее устройство сконструировано таким образом, что при выходе из строя цепи электромагнита будет обеспечиваться стехиометрический состав смеси и двигатель сохранит работоспособность.

Система центрального впрыска Mono-Jetronic.

Cистема имеет одну форсунку, расположенную перед дроссельной заслонкой, рис.6.8,где 1 - топливный бак; 2 - топливный насос; 3 - фильтр; 4 - регулятор давления топлива; 5 - форсунка; 6 - датчик темпе­ратуры воздуха; 7 - электронный блок управления; 8 - ЭП дроссельной заслонки (регулятор ХХ); 9 - потенциометрический датчик положения дроссельной заслонки; 10 - клапан продувки адсорбера; 11 - угольный адсорбер; 12- датчик кислорода (λ - зонд); 13 - датчик температуры двигателя; 14 - датчик-распределитель системы зажигания; 15 -аккумуляторная батарея; 16- выключатель зажигания; 17 - реле; 18 -диагностический разъем; 19 -устройство центрального впрыска.

Качество смеси задается длительностью импульса открытия фор­сунки. Топливо подается под более низким давлением, нежели в описанных системах - 0,1 МПа. Измерения расхода воздуха система не произво­дит. Количество топлива вычисляется:

· по положению дроссельной заслонки;

· частоте вращения КВ.

ЭБУ обрабатывает информацию от датчика положения дроссельной заслонки, датчи­ка-распределителя системы зажигания, датчиков температуры воз­духа и ОЖ, а также датчика кислорода.

Топливно-воздушная смесь обогащается при холодном пуске и прогреве двигателя увеличением длительности цикла топливоподачи. Минимальная частота вращения в режиме ХХ поддерживается путем изменения положения дроссельной заслон­ки с помощью шагового электродвигателя.

При средних нагрузках и прогретом двигателе подача топлива корректируется обратной связью по датчику кислорода.

Полное открытие дроссельной заслонки переводит БУ в режим обогащения рабочей смеси. Для обеспечения приемистости авто­мобиля БУ определяет ускорение перемещения педали управления дроссельной заслонкой и адекватно изменяет подачу топлива.

В режиме принудительного ХХ система работает по общепринятой схеме.

Для ограничения выделения углеводородов (СН) из топливного бака в используется система улавливания паров бен­зина, к которой относятся емкость с активированным углем - ад­сорбер 11 и электромагнитный клапан продувки адсорбера 10. Па­ры бензина из топливного бака поступают в адсорбер. При работе двигателя БУ открывает клапан продувки адсорбера и накопившие­ся пары топлива удаляются во впускной трубопровод. БУ регулиру­ет степень продувки адсорбера в зависимости от режима работы двигателя.

Комплексные системы управления двигателем, Motronic.

Основная функция всех систем Motronic - согласованное управление зажиганием и впрыском топлива. Система обеспечивает:

Регулировку частоты вращения холостого хода;

Поддержание стехиометрического состава смесипо сигналу датчика кислорода;

Управление системой улавливания паров топлива;

Регулирование угла опережения зажигания посигналу датчика детонации;

Рециркуляцию отработавшихгазов для снижения эмиссии ок­сидов азота (NO x);

Управление системой подачи вторичного воздуха для сниже­ния эмиссии углеводородов (СН);

Поддержание заданной скорости движения (круиз-контроль). При более высоких требованиях система может дополняться функциями:

Управление турбонагнетателем, а также изменением конфигу­рации впускного тракта для повышения мощности двигателя;

Управление фазами газораспределения для снижения токсич­ности отработавших газов, расхода топлива и повышения мощно­сти двигателя;

Детонационное регулирование, ограничение частоты вращения и скорости для защиты двигателя и автомобиля.

Система поддерживает работу БУ дру­гих систем автомобиля. Взаимодействуя с АБС и противобуксовочной (ПБС) системами Motronic создает повышенную безо­пасность при езде.

Система ME-Motronic

ME-Motronic (рис.6.9) сочетает в себе систему рас­пределенного фазированного впрыска топлива в зону впускных клапанов и систему зажигания с низковольтным распределением и индивидуальными катушками. Конструкция: 1 - угольный адсорбер; 2 - отключающий клапан; 3 - клапан продувки адсорбера; 4 - датчик давления во впускном коллекторе; 5 - топливная рам­па с форсунками; 6 - свеча зажигания с индивидуальной катушкой; 7 - фазовый дискриминатор; 8- насос вторичного воздуха; 9 - клапан вторичного воздуха; 10 - пленочный датчик массового расхода воздуха; 11- модуль дроссельной заслонки; 12 - клапан рециркуляции; 1 3- датчик детонации; 14 - 15 - датчик темпера­туры двигателя; 16 - датчик кислорода (λ - зонд); 17- электронный блок управления; 18 - диагностический интерфейс; 19- аварийная лампа; 20 - к иммобилайзеру; 21 - датчик давления в бензобаке; 22- погружной электрический топливный насос; 23 - модуль педали управления дроссельной заслонкой; 24 – аккумулятор.

Частота вращения КВ и синхрони­зация системы определяется по сигналу индукционного датчика положения КВ 14. Для определения такта впуска в каждом цилиндре, что необходимо при организации фазированно­го впрыска топлива и зажигания, используется датчик положения распределительного вала - фазовый дискриминатор 7 .

Для расчета нагрузки двигателя используется пленочный датчик массового расхода воздуха 10, датчик давления во впускной трубе 4 , и датчик положения дроссельной заслонки. Основным отличием системы является отсутствие жесткой механической связи между дроссельной заслонкой и педалью, ею управляющей. Положение педали управления дроссельной заслонкой определяется с помо­щью двух закрепленных на ней потенциометров 23. БУ устанавли­вает дроссельную заслонку 11 в оптимальное положение в зависи­мости от нагрузки и других параметров двигателя.

Используется два датчика кислорода 1,. установка датчика после нейтрализатора повышает надежность работы обратной связи по содержанию ки­слорода, так как этот датчик лучше, защищен от загрязнения отра­ботавшими газами. Наличие второго датчика позволяет системе проводить самодиагностику основного датчика стоящего перед нейтрализатором.

БУ имеет интерфейс последовательной передачи данных (CAN) для взаимодействия с БУ других систем автомобиля.

Систе­ма непосредственного впрыска топлива в цилиндры двигателя MED-Motronic рис.6.10, где: 1 -топливо под высоким давлением; 2- топливная рейка (аккумулятору давления); 3 - форсунка; 4 - свеча зажигания с индивидуальной катушкой; 5 - фазовый дискриминатор; 6 - датчик давления топлива; 7 - датчик детонации; 8- датчик положения коленчатого вала; 9 -датчик температуры двигателя; 10 -датчик кислорода (перед катализатором); 11 - трехкомпонентный каталитический нейтрализатор; 12 - датчик температуры выхлоп­ных газов; 13- NО х каталитический нейтрализатор; 14- датчик кислорода (после нейтрализатора)). В сравнении с традиционными системами впрыска бензиновых двигателей, системы непосредственного впрыска позволяют снизить расход топлива до 20% и уменьшить выбросы оксидов углерода.

Топливо непосредственно впрыскивается в цилиндр в любой момент времени с помощью электромагнитных форсунок.

Масса воздуха может свободно регулироваться с помощью электронного модуля дроссельной заслонки. Точное из­мерение массы всасываемого воздуха выполняется с помощью пленочного датчика расхода воздуха.

Состав топливо-воздушной смеси контролируется датчиками ки­слорода в выпускной системе, расположенными перед и после ка­талитического нейтрализатора.

Топливоподкачивающий насос и регулятор дав­ления, расположенные в бензобаке, обеспечивают подачу топлива под давлением 0,35 МПа к насосу высокого давления увеличивающего давле­ние с 0,35 МПа до 12 МПа, после чего топливо поступает в топливную рампу. На топливной рампе расположен ре­гулятор давления, который поддерживает давление в системе во всем диапазоне работы двигателя независимо от количества впры­скиваемого топлива и производительности насоса.

Давление топлива измеряется датчиком, предо­ставляющим собой сварную диафрагму из высококачественной стали с тензорезисторами.

Форсунки высокого давления подсоединя­ются непосредственно к рампе, время начала впрыска и количест­во топлива определяются сигналами от БУ.

Низкое потребление топлива и высокая мощность двигателя достигаются путем организации работы в:

Ø режиме малой нагрузки . При повышении нагрузки увеличивается количество впрыски­ваемого топлива, облако смеси становится бо­лее богатым, что вызвает увеличение содержания вредных веществ в отработавших газах, особенно сажи. Поэтому на высоких нагрузках двигатель переводится на работу на гомоген­ной смеси;

Ø режиме высокой нагрузки . Во время перехода между этими режимами для стабилизации момента необходимо контролировать количество впрыскиваемого топлива, поступающего воздуха и угол опережения зажигания, используется электроуправляемая дроссельная заслонка, как и в ME-Motronic.

Особенностью системы непосредственного впрыска является об­разование оксидов азота (NO x), для уменьшения NO x в выхлопе используется каталитический нейтрализатор аккумулирующего действия.

Электробензонасосы

Электробензонасос постоянно нагнетает топливо из топливного бака. Он может быть встроен непосредственно в топливный бак (погружной) или расположен снаружи (магистральный).

Применяемые в настоящее время погружные насосы (рис. 6.19 и 6.20) смонтированы в баке вместе с датчиком уровня топлива и завихрителем, служащим для отделения пузырьков пара в слив­ном канале. двухступенчатый электробензонасос с шестернями внутреннего зацепления, у которого: 1 - первая ступень (секция с боковым каналом); 2- главная ступень (шес­терни внутреннего зацепления; 3 - якорь; 4 - коллектор; 5 - обратный клапан; 6 – штекер. А на рис. 6.20 изображен вухступенчатый электробензонасос периферийного нагнетания, состоящего из: 1 - всасывающая крышка со штуцером; 2- крыльчатка; 3 - первая ступень(секция с боковым каналом); 4- главная ступень (с периферийным нагнета­нием); 5 - корпус; 6 - якорь; 7 - обратный клапан; 8- крышка подключения со штуцером. Во избежание перегрева при применении магист­ральных насосов, в топливный бак может быть встроен насос подкачки, который подает топливо к главному насосу под малым давлением.

Для обеспечения требуемого давления на любых режимах, к двигателю подается значительно больше топлива, чем он макси­мально расходует. Включение электробензонасоса осуществляется по сигналу от БУ двигателя.

Электробензонасосы состоят из насосной части, электродвига­теля постоянного тока и крышки подключения.

Электродвигатель и насосная часть электробензонасоса имеют общий корпус и постоянно омываются топливом. Это благоприятно сказывается на охлаждении электродвигателя. Отсутствие кисло­рода в корпусе исключает возможность образования взрывоопас­ной смеси. В крышке подключения смонтированы электрические контакты, обратный клапан, нагнетательный и сливной штуцеры. Обратный клапан определенное время сохраняет давление в сис­теме после отключения электробензонасоса во избежание образо­вания паровых пробок. Дополнительно в крышке подключения мо­жет быть установлено помехоподавительное устройство.

В зависимости от требований к системам применяются насосы различных принципов действия (рис. 6.21, а - роликовый насос; б - периферийный насос; в - шестеренныйнасосвнутреннего зацепления; г - насос с боковым каналом).

Объемные насосы. Роликовые насосы и шестеренчатые насо­сы внутреннего зацепления относятся к группе объемных насосов.

Действие насоса состоит в том, что вращающиеся камеры ме­няющейся величины открывают впускной канал и за счет увеличе­ния камеры засасывают топливо. Когда достигается максимальное заполнение, впускной канал закрывается и открывается нагнета­тельный канал. Посредством уменьшения камер топливо выталки­вается. В роликовых насосах камеры образуются за счет вращаю­щихся роликов, находящихся в сепараторе. Под влиянием центро­бежной силы и топливного давления они прижимаются к эксцентри­ческой поверхности статора. Эксцентриситет между сепаратором и статором обуславливает увеличение и уменьшение объема камер.

Шестеренчатый насос внутреннего зацепления состоит из одной внутренней приводной шестерни, находящейся в зацеплении с экс­центрично установленным ротором, который имеет на один зуб больше. Боковые стороны зуба при вращении образуют в своих про­межутках меняющиеся камеры. Роликовые насосы могут применять­ся при давлении топлива до 650 кПа, шестеренчатый насос внутрен­него зацепления до 400 кПа, что вполне достаточно для использова­ния в системах впрыска топлива во впускной трубопровод.

Лопастные насосы. К лопастным насосам относятся перифе­рийные и насосы с боковым каналом. В них топливо ускоряется лопастями крыльчатки и вытесняется в один канал. Периферийные насосы отличаются от насосов с боковым каналом большим коли­чеством лопастей, формой крыльчатки и наличием распределен­ных по окружности каналов. Периферийные насосы могут создать давление топлива только до 300 кПа, но они отличаются малошум­ной работой и находят свое применение благодаря непрерывному, практически не пульсирующему течению топлива. Насосами с боко­вым каналом создается давление только до 100 кПа. Их применяют как подкачивающие насосы в системах с магистральным насосом и как первую ступень при двухступенчатых погружных насосах в ав­томобилях с проблемами горячего пуска, а также в системах с од­ноточечным впрыском.

Электроуправляемые форсунки

При распределенном впрыске бензина каждый цилиндр двига­теля имеет электромагнитную форсунку. Она впрыскивает топливо строго дозированно и в определяемый блоком управления момент времени непосредственно перед впускным (ыми) клапаном (нами) цилиндра. Электромагнитная форсунка имеет клапанную иглу с на­саженным магнитным сердечником (рис. 6.22 и 6.23). Она очень точно прилегает к корпусу распылителя. Спиральная пружина прижимает клапанную иглу в спокойном состоянии к уплотнительному седлу корпуса распылителя и закрывает, таким образом, выходное топливное отверстие во впускной трубопровод двигателя.

Как только блок управления подключает обмотку форсунки, сер­дечник с клапанной иглой поднимается на 60...100 мкм, вследствие чего топливо впрыскивается через калиброванное отверстие.

В зависимости от способа впрыска, частоты вращения и нагруз­ки двигателя время включения составляет 1,5...18 мс при частоте срабатывания 3...125 Гц.

В зависимости от особенностей системы имеются различные типы форсунок.

Форсунка с верхним подводом топлива. В такой форсунке то­пливо подается сверху по ее вертикальной оси. Верхний конец форсунки вставляется в соответствующей формы отверстие топ­ливной рампы, нижний - во впускной трубопровод двигателя. Фор­сунка притягивается пружинным фиксатором к топливной рампе. Уплотнение обеспечивается резиновыми кольцами.

Форсунка с боковым подводом топлива. Встроенная в топ­ливную рампу форсунка такого типа омывается топливом. Подвод топлива осуществляется сбоку. Топливная рампа монтируется не­посредственно на впускном коллекторе. Форсунка крепится прижи­мом или крышкой топливной рампы, в которой может располагаться также и электрический разъем. Два уплотнительных кольца предот­вращают утечку топлива. Наряду с хорошими характеристиками горячего пуска и работы за счет охлаждения топливом, конструкция модуля, состоящего из топливной рампы и форсунок, отличается меньшей высотой.

По способу дозирования различают форсунки с кольцевым, однодырчатым и многодырчатым распылением (рис. 6.24, где: 1 - распылитель с кольцевым каналом; 2- однодырчатый распылитель; 3 - многодырчатый распылитель; 4 - многодырчатый двухфакельный распылитель).

Для оптимизации топливоподачи на двигателях с двумя впускны­ми клапанами используется многодырчатый двухфакельный распы­литель.

При выборе типа топливного дозирования учитывается требование наименьшего образования пленки на стенках впускного канала при хорошей одно­родности топливовоздушной смеси. Форсунки с обтеканием воздухом позволяют добиться дальнейшего улучшения смесеобразования. С этой целью воздух из впускной трубы перед дроссельной заслонкой всасывается со звуковой скоростью через калиброванную щель прямо у шайбы распылителя. Благодаря молекулярному взаимодействию топлива и воздуха топливо очень мелко распыляется.

Форсунки непосредствен­ного впрыска. В ЭСУ топливо-подачей для организации непо­средственного впрыска топлива в цилиндры двигателя исполь­зуются форсунки с электромаг­нитным или пьезоэлектриче­ским приводом. Конструкция электромагнитной форсунки системы топливоподачи для дизельных двигателей Com­mon Rail фирмы Bosch пред­ставлена на рис. 6.25. Она состоит из: 1- сливной штуцер; 2 – разъем; 3 – электромагнит; 4 – резьбовой штуцер; 5 – клапан; 6 - сливное отверстие; 7 – жиклер; 8 – управляющая камера; 9 – плунжер; 10 – топливный канал; 11 – запорная игла. Топливо под давлением 1350 кПа пода­ется к резьбовому штуцеру 4, откуда поступает к распылите­лю через канал 10 и в управ­ляющую камеру 8 через жиклер 7 . Управляющая камера соеди­нена со сливным штуцером 1 через отверстие 6, закрываемое электромагнитным клапаном 5. При закрытом сливном отверстии к плунжеру 9 приложена гидравлическая сила, прижимающая иглу 11 к седлу.

Открытие электромагнитного клапана приводит к уменьшению давления в управляющей камере 8, поднятию плунжера 9 под дей­ствием давления со стороны распылителя и впрыску топлива в ци­линдр. При отключении электромагнита 3 сливное отверстия за­крывается под действием возвратной пружины. Давление в управ­ляющей камере повышается, и форсунка переходит в закрытое со­стояние. Применение электрогидравлического управления обу­словлено необходимостью создания значительного усилия для бы­строго открытия форсунки.

В системе Common Rail третьего поколения используются пьезофорсунки нового образца. Расположение пьезоэлемента в непо­средственной близости к игле форсунки позволило увеличить ско­рость ее срабатывания, снизить массу и число подвижных деталей. Развитие систем непосредственного впрыска направлено на орга­низацию ступенчатого открытия форсунки в зависимости от режима работы двигателя.

Исполнительные механизмы управления частотой вращения коленчатого вала на холостом ходу

Регулирование частоты вращения коленчатого вала на холостом ходу в ЭСАУ бензиновых двигателей осуществляется подачей до­полнительного воздуха в обход дроссельной заслонки или управ­ление ее положением.

В первом случае небольшое количество воздуха направляется во впускной коллектор в обход дроссельной заслонки. В этом кана­ле устанавливается клапан регулировки оборотов холостого хода. При изменении количества воздуха, проходящего через клапан, частота вращения коленчатого вала также изменяется.

В системах К, L-Jetronic фирмы Bosch количество добавочного воздуха регулировалось заслонкой, управляемой биметаллической пластиной (рис. 6.26, где: 1 - разъем; 2- электронагревательный элемент; 3 - биметаллическая пластина; 4 - заслонка). Впоследствии стал применяться трехпроводной клапан регулировки холостого хода (рис. 6.27) Электродвига­тель клапана вращается по или против часовой стрелки в зависи­мости от подключенной обмотки. БУ периодически переключает направление вращения двигателя, что предотвращает перемеще­ние клапана в любое из крайних положений. Изменяя соотношение времени включения одной или другой цепи, БУ может установить клапан в любое требуемое положение.

В некоторых модификациях систем впрыска используется двух­проводной клапан управляемый электромагнитом с возвратной пружиной.

БУ подает на электромагнит клапана управляющие импуль­сы напряжения с постоянной частотой (около 110 Гц). При включе­нии электромагнит преодолевает усилие пружины и открывает кла­пан. Время открытого состояния клапана определяется скважно­стью импульса (т.е. относительным временем подачи напряжения). Чем больше скважность импульсов, тем большее количество воз­духа пройдет через клапан. При неисправности электромагнита клапан останется в закрытом положении. Даже при полностью за­крытом клапане, через него проходит небольшое количество возду­ха для обеспечения базовой частоты вращения коленчатого вала на режиме холостого хода.

В современных системах для управления холостым ходом ис­пользуются шаговые электродвигатели. Шаговый электродвигатель может использоваться для открытия-закрытия клапана, регулирую­щего поступление воздуха во впускной коллектор или ступенчатого перемещения дроссельной заслонки.

На рис. 6.28 представлен регулятор холостого хода с шаговым электродвигателем (а ) и схема его работы (б ). Он состоит: 1- клапан; 2, 3- обмотки шагового электродвигателя; 4 - ротор шагового электродвигателя; 5- пружина; 6 - РХХ; 7 - дроссельный патрубок;5 -дроссельная заслонка; 9- клапан; 10- разъем; А - поступающий воздух.

На статоре электродвигателя размещены об­мотки, имеющие четыре выхода. В продольных пазах ротора уста­новлены постоянные магниты с чередующимся расположением по­люсов. Управление двигателем ведется с помощью электрических импульсов различной полярности подаваемых на обмотки в опре­деленной последовательности. Винтовая передача преобразует вращение вала в поступательное движение клапана.

Датчики для определения нагрузки двигателя

Одной из основных величин для расчета цикловой подачи топ­лива и угла опережения зажигания является нагрузка двигателя;

Для определения нагруз­ки двигателя используются следующие чувствительные элементы:

Датчик количества воздуха;

Нитевой датчик массового расхода воздуха;

Пленочный датчик массового расхода воздуха;

Датчик давления во впускной трубе;

Датчик положения дроссельной заслонки.

Датчик количества воздуха. Датчик устанавливает­ся между воздушным фильт­ром и дроссельной заслон­кой и производит измерение объема воздуха (м 3 /ч), по­ступающего в двигатель (рис. 6.29, где: 1 - дроссельная заслонка; 2- датчик расхода воздуха; 3- сигнал терморезистора; 4 - блок управления; 5- сигнал потенциометра; 6- воздушный фильтр. q l - поступающий воздух; α - угол отклонения заслонки). Проходящий поток воздуха отклоняет за­слонку, противодействуя по­стоянной силе возвратной пружины. Угловое положе­ние заслонки регистрируется потенциометром. Напряже­ние с него передается на блок управления, где произ­водится его сравнение с пи­тающим напряжением по­тенциометра. Это отноше­ние напряжений является мерой для поступающего в двигатель объема воздуха. Определение отношений напряжений в блоке управления исключает влияние изно­са и температурных характеристик сопротивлений потенциометра на точность. Чтобы пульсации проходящего воздуха не вели к колеба­тельным движениям воздушной заслонки, она стабилизируется противовесной заслонкой. С целью учета изменения плотности посту­пающего воздуха при изменении температуры датчик расхода оснащен терморезистором.

По сопротивлению терморезистора проводит­ся корректировка показаний датчика. Датчик количества воздуха дол­гое время был составной частью большинства систем Motronic и Jetronic, выпускаемых серийно. Согласно современным требованиям показания датчика расхода воздуха не должны зависеть от атмо­сферного давления, температуры пульсаций и обратного потока воз­духа, возникающих при работе двигателя. Поэтому в настоящее вре­мя датчик количества воздуха с заслонкой заменен более совершен­ными датчиками массового расхода воздуха.

Датчики массового расхода воздуха. Датчиками массового расхода воздуха называют нитевые или пленочные термоанемометрические датчики. Они устанавливаются между воздушным фильтром и дроссельной заслонкой и измеряют массу воздуха, по­ступающего в двигатель (кг/ч). Принцип действия обоих датчиков одинаков. В потоке поступающего воздуха находится электрически нагреваемое тело, которое охлаждается воздушным потоком.

Схема регулирования тока нагрева рассчитана таким образом, что всегда имеется положительная разность температуры измерительно­го тела относительно проходящего воздуха. В данном случае ток на­грева является мерой для массы воздушного потока. При таком ме­тоде измерения производится учет плотности воздуха, так как она также определяет величину теплоотдачи нагреваемого тела. Отсут­ствие в датчике подвижных частей делает его более надежным.

Нитевой датчик массового расхода воздуха. У данного дат­чика нагреваемым элементом является платиновая нить толщиной 70 мкм. Для учета температуры поступающего воздуха производит­ся ее измерение встроенным компенсационным терморезистором. Нагреваемая нить и терморезистор включены в мостовую схему. Рис. 6.30 – отражает компоненты нитевого датчика массового расхода воздуха: 1 - компенсационный терморезистор; 2- кольцо с нагреваемой нитью; 3 - прецизионный резистор; Q м - поступающий воздух. Рис. 6. 31 – мостовая схема нитевого датчика массового расхода воздуха: R н - нагреваемая нить; R к - компенсационный терморезистор; R м - прецизионный резистор; R 1 , R 2 - балансировочные резисторы; (U м - выход­ное напряжение; Q м - поток воздуха. Нитевой датчик массового расхода воздуха приведен на рис. 6.32, где: 1 – электронный модуль; 2 – крышка; 3 – металлическая вставка; 4 – внутренняя труба с нагреваемой нитью; 5 – кожух; 6 – защитная решетка; 7 – стопорное кольцо. Ток нагрева образует на прецизионном резисторе падение напряжения, пропорциональное массе проходящего воздуха. С целью предупреждения дрейфа за счет отложения загрязнений на платиновой нити после отключения двигателя осуществ­ляется ее нагрев «прожиг» в течение нескольких секунд до темпе­ратуры, ведущей к испарению или осыпанию отложений и тем са­мым ее очистке.

Пленочный датчик массового расхода воздуха. У такого датчика нагреваемым элементом является пленочный платиновый резистор, который находится вместе с другими элементами мостовой схемы на керамической подложке. Рис. 6.33. - пленочный датчик массового расхода воздуха: а – корпус; б – чувствительный элемент с нагреваемой пленкой (смонтирован в центре корпуса); 1 – радиатор; 2 – промежуточная деталь; 3 - силовой блок; 4 – электронный модуль; 5 - чувствительный элемент.

Рис. 6.34 - чувствительный элемент с нагреваемой пленкой: 1 – керамическая подложка; 2 – паз; R к – компенсационный терморезистор; R 1 – резистор моста; R Н – нагреваемый резистор; R S – терморезистор.

Рис. 6.35 - . Схема пленочного датчика массового расхода воздуха: R к - компенсационный терморезистор; R н - нагреваемый резистор; R 1 , R 2 , R 3 - резисторы моста; U м - выходное напряжение; I н - ток нагрева; t L - температура воздуха; Q м - поток воздуха.

Температура нагреваемого элемента измеряется терморезисто­ром, который включен в мостовую схему. Раздельное исполнение нагревательного элемента и терморезистора удобно для организа­ции управления. Для измерения температуры воздуха используется компенсационный терморези­стор, также расположенный на подложке, но отделенный канав­кой. Напряжение на нагреваемом элементе является мерой для массы воздушного потока. Это напряжение преобразовывается электронной схемой изм

Автомобилей на дорогах становится все больше, управлять им в плотном потоке становится все сложнее. Кроме того, в движении принимает участие большое количество молодых водителей, не обладающих достаточным опытом управления автомобилем.

Для помощи водителю и для повышения безопасности дорожного движения разрабатывается большое количество электронных систем безопасности автомобилей.

Автомобильные системы безопасности

Все системы безопасности делятся на активные и пассивные:

  • назначение активных систем – предотвратить столкновения автомобилей;
  • пассивные системы безопасности снижают тяжесть последствий при аварии.

Обзор систем активной безопасности

Данный обзор – попытка перечислить и дать характеристику современным системам активной безопасности.

1. (АБС, ABS). Предотвращает проскальзывание колес во время торможения автомобиля. Часто (но не всегда) работа АБС сокращает тормозной путь автомобиля, особенно на скользкой дороге.

3. Система аварийного торможения (EBA, BAS). В случае быстро поднимает давление в тормозной системе. Используется вакуумный способ управления.

4. Система динамического контроля над торможением (DBS, HBB). Быстро поднимает давление при экстренном торможении, но способ реализации иной, гидравлический.

5. (EBD, EBV). Фактически это программное расширение последних поколений АБС. Тормозное усилие правильно распределяется между осями автомобиля, не допуская блокировки, в первую очередь, задней оси.

6. Электромеханическая тормозная система (ЕМВ). Тормозные механизмы на колесах активируются при помощи электродвигателей. На серийных автомобилях ещё не применяется.

7. (АСС). Сохраняет выбранную водителем скорость автомобиля, поддерживая при этом безопасную дистанцию до движущегося впереди автомобиля. Для поддержания дистанции система может изменять скорость автомобиля, воздействуя на тормоза, или дроссельную заслонку двигателя.

8. (Hill Holder, HAS). При трогании автомобиля на подъеме система не позволяет автомобилю откатываться назад. Даже при отпущенной педали тормоза давление в тормозной системе сохраняется и начинает уменьшаться при нажатии на педаль «газа».

9. (HDS, DAC). Сохраняет безопасную скорость автомобиля при движении на спусках. Включается водителем, но активируется при определенной крутизне спуска и достаточно малой скорости автомобиля.

10. (ASR, TRC, ASC, ETC,TCS). Не дает колесам автомобиля проскальзывать при наборе им скорости.

11. (APD, PDS). Позволяет обнаружить пешехода, поведение которого может привести к столкновению. При опасности оповещает водителя и включает тормозную систему.

12. (PTS, Park Assistant, OPS). Помогает водителю припарковать автомобиль в стесненных условиях. Некоторые разновидности систем выполняют эту работу в автоматическом или автоматизированном режиме.

13. (Area View, AVM). При помощи системы видеокамер, а точнее, синтезированного с них изображения на мониторе помогает управлять автомобилем в стесненных условиях.

14. . Берет управление автомобиля на себя в опасной ситуации для увода автомобиля из-под удара.

15. . Эффективно удерживает автомобиль на полосе движения, обозначенной линиями разметки.

16. . Контролируя наличие помех в «мертвых зонах» зеркал заднего вида помогает безопасно выполнить маневр перестроения.

17. . При помощи видеокамер, реагирующих на тепловое излучение предметов, на мониторе создается изображение, помогающее управлять автомобилем при недостаточной видимости.

18. . Реагирует на знаки ограничения скорости, доводит эту информацию до водителя.

19. . Выполняет мониторинг состояния водителя. Если, по мнению системы, водитель устал, она требует остановки и отдыха.

20. . При аварии, после первого столкновения включает тормозную систему автомобиля, чтобы избежать последующих столкновений.

21. . Наблюдает за обстановкой вокруг автомобиля и при необходимости принимает меры, призванные предотвратить аварию.

Научно-техническая революция начала свой забег в середине ХХ столетия, и до сих пор не может остановиться. Это особенно заметно, если заглянуть под капот современного автомобиля: транспортные средства сегодня превратились в настоящие крепости на колесах, которые могут защитить водителя от многих неприятностей. И не последнюю роль в этой всей истории с гарантией удачной поездки играют системы безопасности автомобиля.

Ситроеновская система AFIL, отслеживающая положение авто относительно разметки

Фото

Каждый день конструкторы автомобильных концернов усложняют чертежи автомобилей, делая их все заковыристее и непонятнее для рядового пользователя. Сегодня бал правят интеллектуальные системы безопасности, а также различные средства, обеспечивающие комфортное вождение. И если учесть, что обстановка на дорогах мира, мягко говоря, далека от идеала, то автомобилю, который не оснащен современными средствами пассивной и активной безопасности, все сложнее «пробиваться» к покупателю.

ABS - антиблокировочная система

Задача ABS (anti-lock braking system ) заключается в том, чтобы предотвратить блокировку колес притормаживающего автомобиля, а также сохранить его управляемость и курсовую устойчивость.

Когда колеса блокируются, и машина, кажется, вот-вот сорвется в занос, электроника начинает методично «отпускать» и «прижимать» тормозные колодки, что дает возможность колесам проворачиваться. Эффективность системы ABS зависит в первую очередь от того, насколько хорошо она настроена. Если, например, она срабатывает слишком рано, то тормозной путь может существенно увеличиться.

Принцип действия

Механизм функционирования ABS довольно прост. Датчики вращения колес издают сигналы, которые попадают на анализирующий их компьютер. Происходит как бы имитация действий профессионального водителя, который использует метод прерывистого торможения.

Насколько же эффективна данная система? Следует сразу отметить, что с момента ее появления не умолкают споры по поводу того, больше от нее пользы или все же вреда. Но, как бы там ни было, даже противники ABS не могут игнорировать такие ее полезные качества, как значительное сокращение тормозного пути, а также сохранение контроля над многотонным авто во время экстренного торможения. Да, при срабатывании АБС очень сложно рассчитать длину тормозного пути, но лучше в полном неведении остановиться неизвестно за сколько метров до фонарного столба, чем «поцеловать» его, точно зная, сколько автомобиль протянет во время торможения. Два противоборствующих лагеря решили сойтись на том, что ABS придется как нельзя кстати неопытным водителям, а «шумахеры» всегда смогут переиграть систему. Но мы ведь говорим с вами о революционной научной мысли, потому сегодня уже смело можно утверждать, что в схватке «ABS - опытный водитель» безоговорочную победу одержит, конечно же, электроника.


Фото

Современные многоканальные ABS позволяют избавиться даже от вибрации тормозной педали при включенной системе. Когда-то причиной дорожно-транспортных происшествий становилось резкое срабатывание ABS: педаль начинала вибрировать, а машина - стонать, потому неопытные автомобилисты пугались и отпускали тормоз. Сегодня же нужно быть крайне чувствительным, чтобы почувствовать, как срабатывает ABS, входящая в стандартную комплектацию почти всех автомобилей. При этом она служит основой для других более сложных электронных систем безопасности.

ASR - антипробуксовочная система

У системы ASR (anti-slip regulation ) есть масса названий, самыми распространенными из которых являются TRC , или «трэкшн-контроль », STC , ASC+T и TRACS . Эта активная система безопасности автомобиля функционирует в тесной связке с ABS и EBD и предназначается для предотвращения пробуксовки колес, независимо от состояния дорожного полотна и усилия, применяемого для нажатия на педаль газа. Как мы уже сказали выше, многие системы безопасности работают на основе ABS. Вот и ASR использует датчики антиблокировочной системы, фиксируя пробуксовку ведущих колес, снижает обороты мотора и, если возникает такая необходимость, притормаживает колеса, обеспечивая эффективный набор скорости. Иными словами, даже если вы «утопите» педаль газа в пол, ASR не даст жечь резину и заниматься шлифовкой асфальта.


Сегодня автомобили оснащают даже приборами ночного видения

Фото

Главное назначение ASR - обеспечение устойчивости авто при резком старте или же при движении в гору по сколькой дороге. «Прокрутка» колес нивелируется благодаря перераспределению крутящего момента силовой установки на те колеса, который в данный момент имеют лучшее сцепление с дорожным полотном. Для ASR действуют определенные ограничения. К примеру, она работает исключительно на скоростях, не превышающих 40 км/ч.

Недостатки

Нельзя не сказать и о некоторых недостатках данной системы. Так, ASR будет очень мешать опытным водителям, пытающимся вытащить застрявшую машину «в раскачку». Система будет не к месту и не ко времени притормаживать и сбрасывать газ. Известны случаи, когда антипробуксовочная система настолько «душила» двигатель, что автомобиль вообще не мог двигаться.

Или вот, к примеру, активные драйверы. Им ASR вставляет палки в колеса при управляемом заносе, контролируя этот занос тягой. Но это не идет ни в какое сравнение с той пользой, которую приносит система: она блокирует дифференциал, притормаживает колесо, загруженное в повороте, и уравнивает скорость вращения колес, позволяя максимально эффективно использовать крутящий момент «сердечка» автомобиля.

Многие автопроизводители сегодня забывают о стрит-рейсерах и делают ASR неотключаемой. Но разве наших изобретательных водителей может что-то остановить? Они просто извлекают предохранитель и потакают своим амбициям гонщика. Однако тут есть и свое «но»: если вы уверены в том, что ASR помешает вам посадить на поводок скорость, мы напоминаем, что данную систему используют в болидах Формулы 1.

EBD - распределяем тормозное усилие

EBD (electronic brake distribution ), или EBV - это активная система безопасности авто, отвечающая за распределение тормозного усилия между всеми колесами. Снова-таки, EBD всегда работает параллельно с основополагающей ABS.

Примечательно, что EBD начинает действовать до реакции ABS, или же страхует последнюю в том случае, если она неисправна. Так как эти системы тесно связаны и всегда работают в паре, то в каталогах очень часто можно встретить обобщающую аббревиатуру ABS+EBD.

Благодаря EBD мы получаем оптимальное сцепление колес с дорогой, значительно повышенную курсовую устойчивость авто при экстренном торможении, а также гарантию того, что контроль над автомобилем не будет потерян даже в критической ситуации. Кроме того, система учитывает такие факторы, как положение автомобиля относительно дороги и загрузка транспортного средства.

Brake assistant - безопасное торможение

Brake Assist (BAS, DBS, PA, PABS ) представляет собой активную систему безопасности автомобиля, которая работает в одной упряжке с ABS и EBD. Она включается в момент экстренного торможения, когда водитель недостаточно сильно, но довольно резко нажимает на педаль тормоза. Brake Assist самостоятельно измеряет усилие и скорость нажатия на педаль и, если необходимо, немедленно повышает уровень давления в тормозной магистрали. Это дает возможность торможению быть максимально эффективным и значительно сократить тормозной путь.


Brake Assist

Фото

Система умеет различать панические действия водителей или же те моменты, когда они довольно продолжительный отрезок времени давят на тормозную педаль. BAS не будет вступать в работу при резких торможениях, которые входят в разряд «прогнозируемых». Многие считают, что эта система является помощником в основном для представительниц слабого пола, ведь у милых дам иногда попросту не хватает сил для осуществления экстренного торможения. Потому в критической ситуации им на помощь приходит система Brake Assist, которая и «дожимает» тормоз до максимального замедления.

EDL: блокируем дифференциал

EDL (electronic differential lock ), которую еще называют EDS , - это система, отвечающая за блокировку дифференциала. Этот электронный помощник дает возможность повысить общую безопасность автомобиля, улучшить его характеристики тяги при неблагоприятных условиях, облегчить момент трогания, обеспечивает интенсивный разгон, а также движение на подъем.


Фото

Система блокировки дифференциала определяет угловую скорость каждого из ведущих колес и сопоставляет полученные результаты. Если угловые скорости не совпадают, например, при пробуксовке одного из колес, EDL подтормаживает буксующее колесо до тех пор, пока скорость его вращения не сравняется со скоростью другого ведущего. Если разность частот вращения достигает отметки в 110 оборотов в минуту, система включается автоматически и действует без каких-либо ограничений на скоростях до 80 км/ч.

HDC: контролируем тягу во время спуска

HDC (hill descent control ), а также DAC и DDS - электронная система контроля тяги для спуска со скольких и крутых уклонов. Функционирование системы осуществляется через подтормаживание колес и «удушение» силового агрегата, однако при этом действует фиксированное ограничение скорости в пределах 7 км/ч (при заднем ходе скорость не превышает 6,5 км/ч). Это пассивная система, которая как включается, так и выключается самим водителем. Регулируемая скорость при спуске в полной мере зависит от первоначальной скорости автомобиля, а также от включенной передачи.


Фото

Система, контролирующая скорость, позволяет отвлечься от тормозной педали и сосредоточиться исключительно на управлении. Этой системой комплектуются все полноприводные транспортные средства. HDC, в автоматическом режиме включающая стоп-сигналы, отключается сразу после того, как скорость автомобиля переваливает за отметку 60 км/ч.

HHC - облегченный подъем

В отличие от системы HDC, помогающей водителям спускаться с крутых склонов, HHC (hill hold control ) предотвращает откат машины при движении в гору. Альтернативными названиями данной системы безопасности являются USS и HAC .


Фото

В тот момент, когда водитель перестает взаимодействовать с педалью тормоза, HDC продолжает удерживать высокий уровень давления в тормозной системе. Лишь в тот момент, когда автомобилист достаточно сильно нажмет педаль газа, давление снижается, и автомобиль начинает движение с места.

ACC: в круиз на автомобиле

ACC (active cruise control ) является адаптивным круиз-контролем, используемым для поддержания заданного скоростного режима автомобиля и контроля безопасной дистанции. PBA (predictive brake assist ) является прогнозирующей системой торможения, которая работает совместно с адаптивным круиз-контролем.


Круиз-контроль

Фото

Если расстояние до впереди идущего авто сокращается, система начинает притормаживать до тех пор, пока дистанция не восстановится до заданного уровня. Если же впереди идущий автомобиль начинает отдаляться, ACC начинает прибавлять скорость.

PDC - парковка под контролем

PDC (parking distance control ), в простонародье Parktronik - система, использующая ультразвуковые сенсоры для определения расстояния до препятствия и позволяющая контролировать дистанцию при парковке.


Парктроник

Фото

О том, насколько велико расстояние до ближайшего препятствия, водителя информируют специальные сигналы, частота которых изменяется при сокращении дистанции - чем ближе автомобиль к опасному участку, тем короче паузы между отдельными сигналами. После того, как до препятствия остается 20 см, сигнал становится непрерывным.

ESP - гарантия курсовой устойчивости

У системы ESP (electronic stability program ), наверное, больше всего альтернативных названий, в которых и черт шейку бедра сломит: ESC, VDC, DSTC, VSC, DSC, VSA, ATTS или Stabilitrac . Данная активная система безопасности отвечает за курсовую устойчивость автомобиля и работает вместе с ABS и EBD.

В тот момент, когда возникает опасность заноса, на сцену выходит ESP. Проанализировав скорость вращения колес, давление в тормозной магистрали, положение руля, угловую скорость и поперечное ускорение, ESP за каких-то 20 миллисекунд вычисляет, какие колеса необходимо притормозить и насколько нужно снизить обороты двигателя для того, дабы стабилизировать авто.


Фото

Электронные системы безопасности вовсе не превращают наши автомобили в высокоинтеллектуальных роботов, которые смогут проделать всю работу за водителя. Краеугольным камнем в этом случае пока остается водитель, который должен уметь трезво оценивать дорожную ситуацию, свои возможности и возможности своего автомобиля. А, как известно, опасней иллюзии, чем иллюзия собственной неуязвимости, не существует.

Современные автобусы и грузовые машины буквально «начинены» всевозможной электроникой. Микропроцессоры улучшают ходовые параметры ТС, снижают эксплуатационные расходы, повышают комфортабельность работы водителя и делают ТО более эффективным. Они воздействуют на:

  • Электрику: зажигание, освещение и прочие узлы.
  • Механику: мотор, ходовая часть и другие системы, отвечающие за управляемость и безопасность ТС.
  • Логистику: контроль работы техники, учет пассажиров.

Чтобы обеспечить сбор информации, на каждом автобусе или грузовике последних моделей устанавливается бортовая сеть, способная отправлять и получать сообщения по определенным наборам соглашений интерфейса. Официально они называются протоколами.

За счет подобной унификации процесса, различные электронные системы автомобилей, которых в машине может насчитываться до 10 штук, могут «понимать» друг друга. Если сообщение, отправленное по одному протоколу, надо конвертировать (преобразовать) в другой, то для этого имеются специальные шлюзы.

Бортовые системы электронного управления работой мотора или трансмиссии изначально монтировались на автомобиль заводом-изготовителем. Логистические компоненты (fleet management) довольно долго устанавливались сторонними организациями. Однако, на сегодняшний день, ведущие фирмы, такие как Scania или MAN, начали оборудовать стандартные версии своей техники и этими электронными системами автомобилей. Теперь передачу информации по беспроводной связи (GPS/GSM/WI-FI/RFID) о параметрах работы ТС на диспетчерский пункт обеспечивает Fleet management собственного производства.

Электронные системы автомобилей имеют достаточно большой расчетный срок службы. Он заметно превышает аналогичный показатель механических агрегатов и узлов и не зависит от пробега. Однако на практике продолжительность работы оказывается меньшей из-за воздействия влажности, вибрации и грязи. Если микропроцессоры выходят из строя, то качественную диагностику может выполнить только профессионал с необходимым оборудованием.

Нередко бывает так, что механики и водители не видят разницы между понятиями «электронный» и «электрический». К автоэлектрике относятся аккумуляторы, стартер, фары, электродвигатели для вентилятора и отопления, лампы накаливания, соединители, переключатели, проводка. Для управления ими в схему включаются электрические реле, которые срабатывают после определенного воздействия.

По мере усовершенствования транспортных средств, управление с помощью реле оказалось неэффективным. Вместо него появились устройства на микропроцессорах (ECU или ECM), с программным обеспечением и блоком памяти. Следующей ступенью развития бортовых электронных систем была их интеграция в единую управляющую систему.

После этого процесс стал выглядеть так. Например, во время переключения КПП, происходит обмен данными между ECU трансмиссии и ECU двигателя. В итоге мгновенно уменьшается крутящий момент, обеспечивая плавный переход на другую передачу.

Устройства разных изготовителей пользуются протоколами, от вида которых зависит степень интеграции. ECU двигателя получает команды от акселератора, датчиков температуры масла, антифриза, воздуха, турбокомпрессора, скорости. В результате топливная система моментально приспосабливается к изменившимся условиям и впрыскивает солярку в точно определенное время.

Благодаря этому, эффективность работы мотора увеличивается, а содержание вредных примесей в отработанных газах снижается. Кроме того, в памяти ECU двигателя хранятся параметры работы агрегата и коды неисправностей. После подключения микропроцессора к тестеру или ноутбуку, их можно считывать, для проведения точной диагностики.

ECU трансмиссии определяет момент изменения передаточных отношений. Этот микропроцессор тоже получает данные из разных источников: джойстика КПП, газовой педали, датчиков двигателя, скорости автомобиля и угловой скорости на выходном валу. В процессе «принятия решений» учитывается вес машины, мощность силового агрегата, вязкость и нагрев масла в КПП, коэффициент трения дисков сцепления. Результатом комплексной обработки полученных данных является последовательное и плавное переключение передач, благодаря чему экономится топливо.

ABS (антиблокировочная система) была разработана в 1975 году. Сегодня это штатное оборудование большинства современных автобусов и грузовиков. В ее задачи входит контроль скорости вращения колес при движении. Первые версии были ненадежными. Но алгоритмы и микропроцессоры все время совершенствовались, в результате чего на сегодняшний день ABS эффективно предотвращает блокировку после резкого нажатия на педаль тормоза. Это повышает управляемость ТС в критической ситуации. Система работает следующим образом. На каждом колесе есть датчик, посылающий информацию о скорости вращения на ECU ABS. Если значение данного параметра падает до нуля, ECU сигнализирует в тормозную систему о том, что надо снизить давление на тормозе этого колеса.

Давление сбрасывается, колесо начинает вращаться, ECU опять применяет торможение, после чего снова сбрасывает давление. Подобный цикличный процесс выполняется за очень малые промежутки времени и продолжается до полной остановки машины. Для повышения эффективности работы, ABS обменивается данными с системой контроля тяги (АТС).

Микроконтроллеры установлены даже на таких, казалось бы, «второстепенных» системах, как кондиционирование, вентиляция и отопление. Раньше, если в кабине было холодно, водитель просто нажимал на кнопку, чтобы включить печку. Становилось жарко - выключал ее или, опять-таки вручную, понижал степень нагрева. Сегодня комфортабельная температура в салоне поддерживается автоматически.

Этим занимается климат-контроль, который можно запрограммировать так, чтобы результаты отвечали потребностям водителя и пассажиров. Это более всего актуально в рефрижераторных фурах, внутри которых должна точно поддерживаться определенная температура. Единственный минус системы HVAC (Heating Ventilation Air-Conditioning) заключается в том, что ее диагностика пока еще достаточно трудоемкая.

Для объединения всех электронных систем автомобиля в единый комплекс предусмотрена мультиплексированная шина данных, которая заменяет несколько кабелей разного типа. Благодаря ей системы могут обмениваться друг с другом различной информацией. Они подключаются к шине по тому же принципу, как компьютеры в офисе присоединяются к локальной сети. Это еще одно важное отличие электроники от электрики, потому что в последнем случае от каждого устройства, фары или стартера, идет отдельный провод. Эти провода затем собираются в жгуты и выводятся на панель с управляющими реле.

Скорость движения и грузоподъемность ТС постоянно растет. Повышаются требования к безопасности движения, экологичности транспорта и комфорту работы водителя. Бортовые системы автомобилей - это незаменимые помощники, позволяющие современным грузовикам и автобусам соответствовать самым высоким стандартам.

Видео: Аренда спецтехники и услуги грузоперевозки без посредников!



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»