«электронные системы автомобилей. Электронные системы автомобиля ACC: в круиз на автомобиле

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

В конструкциях автомобилей все более широкое применение находят электронные системы управления. По прогнозам специалистов в ближайшее десятилетие только 15…18 % изменений конструкции автомобилей будет отдано механике, основные изменения будут касаться электронных систем управления автомобилем.

При упрощенном рассмотрении электронной системы управления автомобилем можно выделить четыре основных блока (рис. 1): входные сигналы - датчики, системы передач данных, электронный (электронные) блок (блоки) управления (ЭБУ), исполнительные механизмы (ИМ).

Рис. 1.

Электронный блок управления является самым сложным прибором систем управления двигателем или отдельных систем автомобиля и координирует их работу. Основу блока составляет центральный процессор или микрокомпьютер.

ЭБУ получает электрические сигналы от датчиков или генераторов в ожидаемом интервале значений, оценивает их, затем проводит вычисление пусковых сигналов для исполнительных устройств (приводов).

Входные сигналы могут быть цифровыми, аналоговыми и импульсными (рис. 2).


Рис. 2.

Цифровые входные сигналы - это входные сигналы, которые имеют только два состояния: «высокий уровень» и «низкий уровень». Примеры цифровых входных сигналов: сигналы включения/ выключения, сигналы цифровых датчиков (например, импульсы от датчика Холла). Такие сигналы обрабатываются непосредственно микропроцессором.

Аналоговые входные сигналы в пределах заданного диапазона принимают значения напряжения. Физические величины, которые Н - высокий уровень сигнала; L - низкий уровень сигнала; FEPROM - программируемая память (постоянное запоминающие устройство, ПЗУ); EEPROM - постоянная память (ПМ); RAM - оперативная память (ОП); A/D - аналогово-цифровой преобразователь (АЦП); CAN - электронная цифровая шина данных рассматриваются как аналоги измеренных значений напряжения: массовый расход воздуха на впуске, напряжение аккумуляторной батареи, давление во впускном коллекторе и давление наддува, температура охлаждающей жидкости и воздуха на впуске. Аналогово-цифровой преобразователь (АЦП) преобразует эти значения в цифровые сигналы, с которыми затем микропроцессор проводит расчеты.

Разновидностью аналоговых сигналов являются быстро изменяющиеся сигналы напряжения, называемые импульсными входными сигналами . Импульсные входные сигналы от индуктивных датчиков, содержащие информацию о частоте вращения и положении вала (по метке), обрабатываются в их собственном контуре в ЭБУ. Здесь ложные импульсы подавляются, импульсные сигналы преобразуются в цифровые прямоугольные сигналы.

Для работы микропроцессору требуется программа, которая хранится в программируемой (перезаписываемой ) памяти (постоянное запоминающие устройство - ПЗУ, или FEPROM). Эта память предназначена только для считывания информации. Она также содержит специальные фиксированные данные (индивидуальные данные, характеристические и программируемые матрицы, значения поправочных коэффициентов и данные, необходимые процессору для расчетов длительности управляющих импульсов форсунок, угла опережения зажигания и т.п.), которые не могут быть изменены во время управления автомобилем. Перезаписывающая память является энергонезависимой, т.е. вся занесенная в нее информация сохраняется при отключении энергопитания сколь угодно долго.

Оперативная память (RAM) служит для хранения таких изменяющихся данных, как численные значения сигналов. Для правильной работы ОП требуется постоянное электрическое питание. При отключении зажигания или выключателя пуска ЭБУ выключается и, следовательно, теряется вся память (так называемая испаряющаяся память). Адаптирующие значения величин, т.е. те, которые «обучаются» системой во время работы и касаются работы двигателя рабочих режимов, должны быть восстановлены при включении ЭБУ в работу.

Данные, которые нельзя терять (например, коды иммобилайзера и данные кодов неисправности), должны храниться в устройстве EEPROM (ПМ) - данные в ПМ не теряются даже в случае отсоединения аккумуляторной батареи.

Блок текущего контроля ЭБУ оснащается следящим контуром, который встроен в специализированную интегральную схему, которая оснащается повышенной оперативной памятью (extra RAM), усовершенствованными входными и выходными блоками и может генерировать и передавать сигналы широтно-импульсной модуляции. Микропроцессор и блок текущего контроля следят друг за другом и, как только обнаруживается неисправность, любой из них может выключить подачу топлива независимо от другого.

Используя выходные сигналы , микропроцессор запускает задающие каскады. Выходные сигналы обычно являются достаточно мощными, чтобы непосредственно управлять исполнительными устройствами или реле. Задающие каскады защищены от короткого замыкания на массу или аккумуляторную батарею и разрушения при электрической перегрузке. Такие нарушения в работе вместе с обрывами цепи или неисправностями датчиков определяются контроллером задающих каскадов, затем эта информация передается в микропроцессор. Выходные сигналы могут быть переключающими и сигналами широтно-импульсной модуляции.

Переключающие сигналы используются для включения и выключения исполнительных устройств (например, электровентилятора системы охлаждения двигателя). Сигналы широтно импульсной модуляции (PWM signals ) - это прямоугольные сигналы с постоянным периодом, но переменные по времени (рис. 3). Они могут быть использованы для пуска электромагнитных приводов (например, клапана системы рециркуляции ОГ - отработавших газов).

Встроенная диагностика . Одной из важных функций блока управления является непрерывная самодиагностика не только входных и выходных цепей компонентов, но и некоторых показателей внутреннего состояния системы. В современных ЭБУ осуществление самодиагностики занимает до 50 % ресурсов микрокомпьютера. В случае нахождения неисправностей в какой-либо цепи (например, отсутствие или несоответствие заданному уровню сигнала одного из датчиков) микропроцессор записывает соответствующий данной неисправности цифровой код в специальную область памяти, а для того чтобы получить информацию о характере неисправности, необходимо осуществить считывание кода из памяти компьютера.

Рис. 3. а - постоянный период; b - длительность сигнала

ЭБУ постоянно контролирует исправность всех его компонентов, но ошибка помимо своего информационного значения несет флаг статуса, т.е. ошибки могут быть статические (текущие) и случайные (спорадические, накопленные).

Каждый раз при включении зажигания ЭБУ начинает анализировать работу своих датчиков и исполнительных устройств. Такой анализ длится все время, пока работает двигатель. При обнаружении дефекта ЭБУ фиксирует неисправность, выставляет код ошибки и использует аварийную ветвь программы управления. В случае если какой-либо входной сигнал отсутствует или заведомо неправильный, блок управления рассчитывает и использует вместо него некоторое теоретическое значение, что позволяет ему продолжать дальнейшее управление двигателем. Например, при выходе из строя датчика давления во впускном коллекторе для определения времени впрыска используется значение, рассчитанное исходя из частоты вращения коленчатого вала и положения дроссельной заслонки.

После выключения зажигания блок управления сохраняет код в ОЗУ.

2. Системы передачи данных

Современное автомобилестроение интенсивно внедряет инновационные технологии в системах управления. Общая тенденция в области автоматизации автомобилей состоит в замене традиционной централизованной системы управления распределенной системой управления путем соединения блоков управления интеллектуальных датчиков и исполнительных механизмов. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностирования автомобилей и снижением надежности. Увеличивающееся применение электронных систем управления автомобилей с обратной и без обратной связи требует, чтобы индивидуальные ЭБУ работали в сети друг с другом. Такие системы управления включают:

  • управление коробкой передач;
  • электронное управление двигателем или регулирование подачи топлива;
  • антиблокировочную систему тормозов (ABS);
  • противобуксовочную электронную систему (TCS);
  • электронную систему курсовой устойчивости (ESP);
  • систему управления тормозным моментом (MSR);
  • электронный иммобилайзер (EWS);
  • бортовой компьютер и т.д.

Обмен информацией между системами уменьшает общее количество необходимых датчиков и улучшает управление отдельными системами. Интерфейсы систем передачи информации, проектируемые для применения в автомобилях, могут быть подразделены на четыре категории:

  1. обычная передача данных;
  2. последовательная цифровая передача данных, т.е. сеть контроллеров (CAN);
  3. широкополосные шины передачи данных с временным разделением каналов (шина FlexRay);
  4. оптическая передача данных (шина типа МОSТ).

Обычная передача данных в автомобиле (рис. 4) характеризуется тем, что каждый сигнал имеет свой собственный канал связи (провод). При этом с каждой дополнительной информацией возрастает также число проводов и количество контактов на блоке управления, поэтому подобный тип передачи информации оправдывает себя только в случае ограниченного объема передаваемых данных.

Рис. 4.

Увеличение обмена данными между электрическими компонентами автомобиля уже достигли таких объемов, что дальнейшие попытки управления через обычные интерфейсы уже не удовлетворяют современные системы управления, поэтому стали применяться шины передачи данных.

В связи с возросшими требованиями передачи информации в автомобильных системах управления, вместо обычной электропроводки в современных автомобилях используется последовательная цифровая передача данных . Все более широкое распространение находят электронные цифровые шины данных CAN (Controller Area Network). Цифровая передача данных значительно надежнее обычной аналоговой, так как шина лучше защищена от помех, контакты надежно изолированы от внешних воздействий.

Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники. CAN-шина облегчает диагностику и ремонт вышедших из строя компонентов системы управления автомобилем. Универсальная проводка подходит и для разных комплектаций одного автомобиля - дополнительные устройства просто подключаются к нужным разъемам.

В зависимости от приоритетов и требований к скорости передачи данных шина CAN может быть одноили двухпроводной.

Если для работы систем достаточно низкой скорости передачи данных, то используются шины с одним проводом связи, если скорость передачи должна быть высокой - шины с двумя проводами связи. Второй провод используется для проверки правильности переданной модулем управления информации и для самоконтроля модуля. Данные передаются по обоим проводам одновременно. Сигнал на первом проводе представляет собой перевернутое повторение сигнала, передаваемого по второму проводу.

Все связанные через шину CAN блоки управления подключаются к ней параллельно. Один из проводов шины CAN называется верхним - CAN H (High), другой - нижним - CAN L (Low). Два невзаимозаменяемых скрученных провода (рис. 5) образуют пару (Twisted Pair).

Рис. 5.

Скручивание проводов производится для того, чтобы ослабить помехи электромагнитного характера, а также излучающие помехи. Скручивание позволяет также устранить излучение шины, способное создать помехи в работе других устройств.

По проводу CAN H информация передается в виде электрических сигналов напряжением от 2,5 до 3,5 В, а по проводу CAN L - от 1,5 до 2,5 В (рис. 6). Разность напряжений, равная нулю, дает уровень логического нуля, а разность напряжений 2,0 В - уровень логической единицы.

Рис. 6.а - напряжение; б - разность напряжений; А, С - логический уровень равен 0; B - логический уровень равен 1

CAN - мультимастерная шина, т.е. без центрального управляющего устройства. Все подключаемые к центральному или центральным блокам электронные блоки разных систем (или контроллеры) равноправны - любой имеет доступ к передаваемым данным и может сам их передавать.

CAN-шина относится к типу последовательных; передача данных в шине выполняется по протоколу в виде обмена сообщениями между блоками управления через очень короткие промежутки времени. Протокол состоит из последовательности бит* информации, передающихся друг за другом. Число бит в протоколе передачи данных зависит от размера поля данных.

* Бит - базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равно вероятных исхода (да или нет).

Данные передаются бит за битом и в такой же последовательности принимаются. Биты составляют отдельные поля (рис. 7), из них складываются так называемые кадры - основные информационные единицы.

Начало кадра обозначает начало протокола передачи данных.

Арбитражное поле используется для обозначения приоритета протокола передачи данных. Например, если двум блокам управления требуется отправить сообщения одновременно, то первым отправляет сообщение в блок управления с более высоким приоритетом. Кроме того, арбитражное поле используется для определения содержания сообщения (например, частоты вращения коленчатого вала двигателя).

Рис. 7.1 - начало кадра (1 бит); 2 - арбитражное поле (11 бит); 3 - неиспользуемое (запасное) поле (1 бит); 4 - поле управления (6 бит); 5 - поле данных (64 бита); 6 - поле обнаружения ошибок CRC (16 бит); 7 - поле сигнала приемника передатчику ACK (2 бита); 8 - конец кадра (7 бит)

В поле управления (контрольное поле ) в виде кода записывается количество элементов информации в поле данных. Этим обеспечивается возможность для каждого приемника проверить, были ли получены все необходимые данные.

В поле данных передаются элементы данных, являющиеся важными для других блоков управления. Оно содержит больше всего информации: от 0 до 64 бит (от 0 до 8 байт).

Поле CRC используется для обнаружения ошибок в процессе передачи данных.

Поле ACK содержит сигнал приемника передатчику о том, что протокол данных был успешно выполнен. В случае обнаружения ошибки информация об этом немедленно поступает в передатчик и отправка сообщения повторяется.

Конец кадра предназначен для проверки передатчиком протокола данных и отправки приемнику подтверждения о его безошибочном выполнении. В случае обнаружения ошибки передача данных немедленно прекращается, а затем выполняется повторно. После этого протокол передачи данных считается выполненным.

Один кадр может включать несколько параметров, например, кадр, выдаваемый ЭБУ системы впрыска топлива, может состоять из следующих параметров:

  • частота вращения коленчатого вала двигателя;
  • средний эффективный крутящий момент двигателя;
  • заданная водителем скорость движения;
  • состояние системы круиз-контроля (включена или не включена);
  • разрешение на включение компрессора кондиционера;
  • величина крутящего момента двигателя без учета воздействия автоматической коробки передач.

Рис. 8. 1 - идентификационный код послания (11 бит); 2 - содержание послания (до 8 × 8 бит); 3 - контрольная сумма (16 бит); 4 - подтверждение приема послания (2 бит)

Некоторые кадры выдаются периодически (например, кадр системы впрыска топлива - через каждые 10 с), другие - при наступлении какого-либо события (например, кадр, генерируемый ЭБУ подушек безопасности, выдается в случае удара, при этом выключается топливный насос, происходит разблокировка замков дверей и запрещается блокировка рулевой колонки).

Обмениваемая информация состоит из отдельных посланий, которые могут быть отправлены и получены каждым из блоков управления. Каждое из посланий (рис. 8), составленное согласно протоколу, содержит данные о каком-либо физическом параметре, например, о частоте вращения коленчатого вала.

Примером идентификационного кода послания может быть: двигатель, частота вращения коленчатого вала двигателя. В этом же послании могут содержаться и другие данные (например, указания о холостом ходе, передаче крутящего момента и других режимах работы двигателя). При этом величина частоты вращения представляется в двоичной форме, т.е. как последовательность нулей и единиц или бит (рис. 9). Например, значение частоты вращения двигателя 1800 об/мин может быть представлено как двоичное число 00010101.

Рис. 9.

Пример упрощенной передачи данных на примере угла положения дроссельной заслонки, который показывает, как строится информация, дан в табл. 1. Положение дроссельной заслонки от 0° до 102° передается с шагом 0,4° 8 битами, таким образом возможно 256 вариантов комбинаций битов.

Таблица 1. Зависимость изменения данных в шине от положения (угла) дроссельной заслонки

В современных автомобилях, как правило, применяются три вида шин, работающие с разными скоростями (рис. 10). Наиболее важные устройства и системы (антиблокировочная система тормозов, система курсовой устойчивости и др.) подключаются к скоростной магистрали с пропускной способностью 500…1000 Кб/с, практически обеспечивающей работу системы в реальном времени. Менее быстрые и важные приборы - система «Комфорт» или информационно-командная система (радио, монитор на центральной консоли, система навигации и кондиционирования) - завязаны на вторую шину со скоростью 95,2…100,0 Кб/с. Для остальных «медленных» устройств - система «Комфорт» (дверных замков, систем освещения, стеклоподъемников) - служит третья шина со скоростью 33,3…100,0 Кб/с.

Рис. 10.(на примере автомобиля Polo модели 2002 г.): 1 - шина наиболее важных устройств; 2 - шина информационно-командной системы; 3 - шина системы комфорта; БУ - блок управления; ЗУ - запоминающее устройство

Вместо ключа зажигания в автомобилях, оборудованных CAN-шинами, используют электронный брелок, который взаимодействует с блоком управления двигателем через цифровую шину. Возросшие требования к скорости передачи и безопасности данных требуют применения широкополосных шин передачи данных с временным разделением (временным управлением) каналов (для сравнения: CAN представляет собой событийно-управляемую шину данных).

Шина FlexRay - это последовательная, детерминистическая и устойчивая к сбоям шина передачи данных для применения в автомобиле; скорость передачи данных составляет 10 Мб/с, что в 20 раз превышает скорость передачи по высокоскоростной шине CAN (500 Кб/с).

Важной особенностью FlexRay является также гарантированное время реакции или латентный период реагирования, т.е. время, которое требуется на прохождение сообщения от отправителя до получателя. В связи с этим говорят также о детерминистической (предопределенной, регламентированной) передаче. Это означает, что данные поступают к адресату или адресатам в строго определенный или предварительно заданный момент времени (возможно применение в режиме реального времени).

Шина FlexRay двухпроводная: плюсовой провод обозначают красным цветом, минусовой - синим. Уровень напряжения на обоих проводах колеблется (рис. 11) от минимума (2,2 В) до максимума (2,8 В) (для сравнения в высокоскоростной шине CAN 1,5…3,0 В). Уровень разностного напряжения составляет не менее 600 мВ (в высокоскоростной шине CAN 2 В).

Рис. 11.

FlexRay работает с тремя состояниями сигнала:

  • холостой сигнал - уровень напряжения обоих проводов шины составляет 2,5 В (режим холостого хода). Рецессивный сигнал означает, что уровень напряжения может быть превышен (перезаписан) другим блоком управления;
  • 1 - плюсовой провод имеет высокий, а минусовой - низкий доминирующий уровень напряжения;
  • 0 - плюсовой провод имеет низкий, а минусовой - высокий доминирующий уровень напряжения.

Доминирующий сигнал означает, что этот уровень напряжения не может быть превышен (перезаписан) другими блоками управления.

При таких параметрах уровня напряжения время передачи 1 бит составляет 100 нс (наносекунд) (для сравнения в высокоскоростной шине 2000 нс).

Центральный блок информационно-командной системы может соединяться с процессором навигационной и других систем посредством оптического кабеля - шины типа МОSТ (Media Oriented Systems Transport). Это необходимо для защиты линии передачи данных от помех. Для передачи данных через оптический кабель следует преобразовать аналоговую информацию в серии световых импульсов, которые затем могут распространяться по стеклянным волокнам кабеля. Длина световых волн меньше длины радиоволны, поэтому они не создают электромагнитных помех и сами являются невосприимчивыми к таковым.

Вокруг любого проводника, по которому проходит электрический ток (рис. 12), возникают поля, поэтому проложенные параллельно или перекрещивающиеся проводники тока создают взаимные помехи. Помехи создаются также электромагнитными волнами, генерируемыми, например, мобильным телефоном. При использовании волоконно-оптической связи такие помехи отсутствуют.

Рис. 12. Передача тока по волоконно-оптическому (а) и металлическому (б) проводникам: 1 - цифровая информация; 2 - оптический кабель; 3 - аналоговая или цифровая информация; 4 - металлический проводник; 5 - электромагнитное поле проводника

Преимуществом современных волокно-оптических систем, кроме отсутствия помех, является также скорость передачи данных, достигающая 21,2 Мб/с, что позволяет передавать информацию в виде цифрового сигнала. Такая связь применяется при приеме аудио- и видеопередач, что требует скорости передачи данных порядка 6 Мб/с и больше, в то время как шина CAN при большом количестве жил в жгуте проводов может передавать данные со скоростью не более 1 Мб/с.

Светодиод - один из основных компонентов волокно-оптической системы (рис. 13) предназначен для преобразования сигнала по напряжению в световой сигнал. Длина волны выработанных световых сигналов около 650 нм и их видно как красный свет. Световод предназначен для отправки световых волн, вырабатываемых в передатчике одного блока управления, на приемник другого блока управления. Фотодиод предназначен для преобразования световых волн в сигналы по напряжению.

Рис. 13.1 - световод; 2 - фотодиод; 3 - светодиод; 4 - трансивер

Недостатком волокно-оптической системы является требование плавных изгибов; радиус изгиба световода не должен превышать 25 мм.

Шина типа MOST представляет шину последовательной передачи данных (аудио- и видеосигналов, голосовых сигналов) по оптическому кабелю (рис. 14). С точки зрения физического исполнения в случае шины MOST речь идет о кольцевой структуре (топологии) сети. Шина типа MOST может включать до 64 устройств.

Рис. 14. Шина типа MOST (на примере Touareg 2011 Volkswagen): 1 - ЭБУ в комбинации приборов; 2 - диагностический интерфейс шин данных; 3 - ЭБУ информационной электронной системы; 4 - ТВ-тюнер; 5 - DVD-чейнджер; 6 - головное устройство аудиосистемы; 7 - ЭБУ цифровой аудиосистемы

Что скрывается за аббревиатурами, обозначающими электронные системы автомобиля

Электронные системы управления автомобилем

AAR — Автоматическая рециркуляция воздуха.

Антиблокировочная тормозная система. Помогает избежать блокировки колес при внезапном торможении или при торможении на скользкой дороге.

ADB — автоматически блокируемый дифферинциал. При пробуксовке одного колеса передает часть момента вращения на другое, улучшая проходимость.

ASC - Automatische Stabilitats Control. Антипробуксовочная система.

ASC+T — Система автоматического контроля устойчивости с регулятором тяги (ASC+T) предотвращает пробуксовку задних ведущих колес и обеспечивает надежное сцепление шин с дорогой и великолепную траекторную устойчивости. Если колесу грозит пробуксовка, например, при трогании с места или ускорении на выходе из поворота, то система управления двигателем снижает момент привода. Если этого оказывается недостаточно, то буксующее колесо или колеса автоматически подтормаживаются до тех пор, пока не восстановится нормальное сцепление шин с дорогой.

ASR — Antriebs-Schlupf-Regelung — Автоматика противоскольжения (автоматическое регулирование ведущих колес по их буксованию.

A-TRC (Active Traction Control) — активная антипробуксовочная система. A-TRC — более интеллектуальная версия традиционной антипробуксовочной системы. Она не позволит автомобилю буксовать даже при самых неблагоприятных условиях движения (как по дороге, так и по бездорожью). A-TRC автоматически обнаруживает пробуксовку ведущего колеса, подтормаживает его и снижает передаваемый на него крутящий момент, распределяя его между остальными тремя колесами. В результате на ведущие колеса, обладающие лучшим сцеплением с дорожным покрытием, всегда передается оптимальный крутящий момент. В сложнейших дорожных условиях система A-TRC практически заменяет собой блокировку дифференциалов, при этом колеса автомобиля не тормозятся так сильно на крутых поворотах. Совместная работа систем A-TRC и VSC обеспечивает отличную управляемость автомобиля при движении по очень скользкой дороге.

AUC —система контроля загрязнения наружного воздуха BMW позаботится о чистоте воздуха в салоне. Система распознаёт в наружном воздухе, например, оксид углерода, оксиды азота, этанолы и прекращает при их повышенной концентрации поступление воздуха в салон, переключая на некоторое время автоматический кондиционер на рециркуляционный режим.

BA (Brake Assist) - усилитель тормозов. Усилитель тормозов обеспечивает аварийное торможение в случае, когда водитель нажимает на педаль тормоза резко, но недостаточно сильно. Для этого система измеряет насколько быстро и с каким усилием нажата педаль, после чего, при необходимости, мгновенно повышает давление в тормозной системе до максимально эффективного. Вспомогательное усиление является едва заметным и лишь добавляет Ваши собственные действия.

CBC — система контроля торможения на поворотах.

D-4 — технология непосредственного впрыска топлива для бензиновых двигателей. Топливо впрыскивается под высоким давлением непосредственно в камеру сгорания. За счет применения этой технологии улучшаются эксплуатационные характеристики двигателя, уменьшается расход топлива и снижается уровень выбросов вредных веществ.

DAC (Downhill Assist Control) — система помощи при спуске по склону. На крутых спусках, когда система DAC обнаруживает, что скорость автомобиля больше скорости вращения колес, она автоматически изменяет тормозное усилие на отдельных колесах. Таким образом, система DAC поддерживает постоянную скорость в диапазоне 5-7 км/ч - идеальную для управляемого спуска с крутого склона. Система DAC также включается и при спуске задним ходом, но в этом случае она поддерживает скорость в пределах 3-5 км/ч.

DI Direct Injection — непосредственный впрыск. Вnpыск топлива непосредственно в камеру сгорания обеспечивает его лучшее сгорание, но вместе с тем большую шумность и вибронагруженность. В настоящее время получает все большее распространение.

DOHC Double Overhead Camshaft — два распределительных вала в головке. Аббревиатура, обозначающая распространенную схему газораспределительного механизма.

DME - Digital Motor-Elekronik или Motronik — Цифровая система управления .

DBC — Dynamic Brake Control — система регулирует тормозные усилия в зависимости от нагрузки на оси. Распознает экстренное торможение и самостоятельно включает тормоза на полную мощь.

DSC Dynamic Stability Contro l. Аббревиатура, используемая "BMW" для обозначения электронной системы стабилизации автомобиля. То же что и ESP.

DTC — Dynamic Traction Control — противобуксовочная система.

EBD (Electronic Brake Distribution) - система электронного распределения тормозного усилия. Работает в комплексе с системой ABS, обеспечивая с помощью электроники равномерное распределение тормозного усилия между всеми четырьмя колесами, чтобы обеспечить каждому из них оптимальное сцепление с дорогой.

EDC — Система электронной регулировки жесткости амортизаторов (EDC) моментально подстраивает жесткость амортизаторов BMW в зависимости от состояний дорожного полотна, загрузки автомобиля и условии движения. Электронный управляющий блок определяет, исходя из колебаний автомобиля, оптимальный уровень амортизации. При трогании с места, торможении и изменении направления движения он выше, а при спокойной поездке ниже. Наряду с автоматической подстройкой Вы можете нажатием клавиши установить более жесткий, спортивный вариант настройки.

EGR — система дожигания топлива для уменьшения вредных примесей в выхлопных газах.

ЕНВ Электронно-гидравлическая тормозная система. Управляемая электроникой тормозная система, в которой рабочее давление создается не ногой водителя, а насосом. На педали устанавливается специальный датчик.

EMV Электромагнитная совместимость. В автомобиле и вне его имеется большое количество источников электромагнитного излучения и электронных приборов, которые могут влиять на работу друг друга — от системы зажигания до мобильного телефона и приемника. Чтобы изучить и уменьшить это влияние, проводят специальные испытания.

EON Enhanced Other Network — дословно усиленная другая сеть. Функция автомобильного аудиоборудования, когда аудиосистема автоматически переключается на радиостанцию, передающую сообщение о ситуации на дорогах, а по окончании сообщения возвращается к прежней настройке.

ESP Electronic Stability Program — аббревиатура, используемая "Daimler Chrysler" и некоторыми другими компаниями для обозначения электронной системы стабилизации автомобиля. Используя штатную тормозную систему автомобиля, обеспечивает сохранение курсовой и траекторной устойчивости в . Если, например, автомобиль в повороте проявляет склонность к заносу, то система подтормаживает наружное к повороту переднее колесо. А при сносе передних колес притормаживает внутреннее заднее. В последнее время электронные системы стабилизации получают все более широкое распространение, причем не только в дорогих автомобилях.

ETS/ETC — Electronic Traction Support (Control). Система антипротивобуксовочного контроля. Электронное управление тягой.

FSI (Fuel Stratified Injection) — система непосредственного послойного впрыска топлива (аналог японской GDI).

GPS Global Positioning System — спутниковая система, позволяющая определять местоположение объекта с точностью метра до 10. GPS — приемники являются основой большинства современных навигационных систем.

HAC (Hill-start Assist Control) — система помощи при подъеме по склону. Она позволяет безопасно и без потери управляемости начинать движение вверх по крутому и скользкому склону и немедленно информирует водителя о скатывании автомобиля вниз. Когда система обнаруживает пробуксовку одного или нескольких колес, она автоматически перераспределяет крутящий момент таким образом, чтобы восстановить сцепление с шин с поверхностью. Очень важно, что колеса, шины которых имеют нормальное сцепление с поверхностью дороги, периодически подтормаживаются, чтобы восстановить контакт с дорожным покрытием шин буксующих колес. Это позволяет водителю не потерять контроль над автомобилем.

НС Hydrocarbone — углеводород. Углеводороды — органические соединения, молекулы которых состоят из атомов углерода и водорода. Общая химическая формула углеводородов — СН. В применении к автомобильным двигателям под СН чаще всего понимают опасные для здоровья несгоревшие углеводороды, присутствующие в отработавших газах.

Head-up-Display Проецирование показаний приборов и сигнальной информации непосредственно в поле зрения водителя. Используется на некоторых моделях автомобилей и современных боевых самолетах.

IC Inflatable Curtain —надувающаяся занавеска. Разновидность подушки безопасности, применяемая для защиты головы и шеи при ударе сбоку. Предотвращает удар головой о детали интерьера и о неподвижные предметы, с которыми мог столкнуться автомобиль. Одновременно препятствует выпадению пассажиров в окна при аварии.

LED Light Emitting Diod —"светоизлучающий диод". Светодиоды находят все большее применение в приборах внешней световой сигнализации, поскольку обеспечивают большую яркость, а главное — более высокое быстродействие по сравнению с лампами накаливания.

LPG Liquid Petroleum Gas —"сжиженный нефтяной газ". Смесь пропана и бутана, образующаяся как побочный продукт на нефтеперегонных заводах. Имеет высокое октановое число, используется как топливо для ДВС.

MID — Информационная система с мультиинформационным дисплеем.

MPI Multi Point Injection — "многоточечный впрыск". Аббревиатура, используемая для обозначения системы распределенного впрыска бензина, когда для каждого из цилиндров используется отдельная форсунка. В отличие от центрального впрыска, когда используется одна форсунка, "обслуживающая" все цилиндры двигателя. NOх Обобщенная химическая формула оксидов азота. В применении к автомобильному двигателю под N0х чаще всего понимаются токсичные оксиды азота, образующиеся при сгорании топлива в цилиндрах двигателя.

OBD On Board Dyagnostics — бортовая диагностика. Аббревиатура, обозначающая автоматический контроль технического состояния транспортного средства установленными на нем диагностическими системами.

O/D — дополнительная повышенная передача в автоматической коробке передач. АКПП в подавляющем большинстве случаев имеет 4 передачи, причём 3 передача является прямой (имеет передаточное число 1, соответствует 4-ой передаче в механической коробке передач). 4-ая передача АКПП называется овердрайвом (O/D) — она имеет передаточное число меньше единицы (соответствует 5-ой передаче МКПП) и является повышающей. Эта 4-ая скорость экономит топливо, и бережёт двигатель.

Optitron — Оригинальная система подсветки комбинации приборов. При выключенном зажигании комбинация приборов не видна. При включении зажигания сначала «загораются» стрелки приборов, а затем одновременно тахометр, спидометр, указатель уровня топлива и индикатор ручного тормоза. Благодаря темному антибликовому фону приборы с системой Optitron отличаются превосходной читаемостью при любой .

PDC — Сигнализация аварийного сближения при парковке.

RDC — Система контроля за давлением воздуха в шинах при любой скорости движения следит за давлением с помощью датчиков. Уже при незначительном падении давления на приборном щитке загорается сигнальная лампа. При сильном падении давления дополнительно прозвучит предупредительный сигнал.

RDS Radio Data System . Система цифровой передачи данных на частоте вещания радиостанции и приема их автомобильным радиоприемником. Принимаемая информация отображается в буквенно-цифровом виде на дисплее радиоприемника. Таким образом передаются, например, названия , курсы валют, прогноз погоды и т.д.

SAE Society of Automotive Engineers . Американское общество автомобильных инженеров. Широко известна разработанная SAE классификация масел по вязкости.

SIPS Side Impact Protection System . Система защиты от бокового удара. Обозначает комплекс мер, включающий усиление соответствующих элементов кузова (дверных проемов, порогов, стоек, поперечин), размещение защитных и энергопоглощающих элементов в дверях, а также систему боковых подушек безопасности.

SDI Аббревиатура для обозначения атмосферных (безнаддувных) дизелей с непосредственным впрыском топлива.

SRS Supplemental Restaint System — дополнительная система удержания, или надувная подушка безопасности.

STC Stability and Traction Control . Аббревиатура для обозначения противобуксовочной системы.

TCS — Traction Control System — Система управления тягой (антипробуксовочная).

TDI Аббревиатура для обозначения дизелей с непосредственным впрыском и турбонаддувом.

TEMS (Toyota Electronically Modulated Suspension) - электронная система управления подвеской. Благодаря системе TEMS автомобиль Prado легко справляется с любой дорогой. Одно нажатие на кнопку — и система управления подвеской переводит амортизаторы в один из четырех возможных режимов работы: сверхкомфортный, комфортный, полуспортивный или спортивный. Система позволяет подвеске активно реагировать на условия движения: резкие повороты, торможение, езда по бездорожью. Она позволяет водителю лучше чувствовать дорогу при движении по бездорожью. При резком повороте система автоматически настраивает жесткость амортизаторов, противодействуя крену кузова и сохраняя устойчивость автомобиля. Аналогичным образом система уменьшает поперечные крены кузова на бездорожье и “клевки носом” при торможении.

TMC Traffic Message Chamel . Система передачи сообщений о дорожной ситуации на автомобильный радиоприемник.

Torsen Образовано от Torque Sensing — чувствование крутящего момента. Торговая марка фирмы "Gleason". Название червячного самоблокирующего дифференциала. Широкую известность получила благодаря использованию Torsen в качестве межосевых дифференциалов на всех автомобилях Audi Quattro.

TRC (Traction Control) - антипробуксовочная система. При пробуксовке ведущих колес при ускорении система автоматичекси снижает крутящий момент двигателя и подтормаживает сорвавшееся в пробуксовку колесо, способствуя восстановлению тягового усилия. Действуя совместно с системами ABS и EBD, она облегчает и ускорение, и торможение.

Twin Spark — двойная искра. Название, используемое Alfa Romeo для обозначения системы зажигания с двумя свечами на цилиндр.

UIS Unit Injector System . Аббревиатура, обозначающая насос-форсунки.

VANOS обозначает системы изменения фаз газораспределения.

VSC (Vehicle Stability Control) — система курсовой устойчивости. Автоматически срабатывает после того, как улавливает занос из-за резкого поворота руля или недостаточного контакта со скользкой дорогой. Подтормаживая то или иное колесо и изменяя крутящий момент двигателя, она выводит автомобиль из заноса и помогает водителю стабилизировать траекторию движения.

VTEC Variable Valve Timing and Lift Electronic Control — "электронное управление изменяемыми фазой и подъемом клапанов". В зависимости от режима работы двигателя система обеспечивает привод одноименных (например, впускных) клапанов каждого цилиндра от одного общего или двух разных кулачков распределительного вала.

VVT-i (Variable Valve Timing — intelligent) Электронная система изменения фаз газораспределения. Регулирует время открытия впускных клапанов, поддерживает оптимальный момент открытия, за счет чего улучшается наполнение двигателя горючей смесью. В результате улучшаются характеристики двигателя на промежуточных режимах работы.

VVTL-i (Variable Valve Timing and Lift — intelligent) Электронная система изменения фаз газораспределения. Регулирует время открытия впускных клапанов и высоту открытия впускных и выпускных клапанов. Используется в двигателе для спортивной модификации Corolla T-Sport.

WHIPS Whiplash Protection System — система защиты от "плетевого" удара. Название специальной системы, предназначенной для снижения нагрузок на позвоночник и уменьшения вероятности получения травм позвоночника при ударе сзади (попутном столкновении). При такой аварии система обеспечивает передвижение спинки сиденья назад (для снижения нагрузки), после чего спинка откидывается на угол 15° (для предотвращения "эффекта катапультирования").

WIL (Whiplash Injury Lessening) Технология, применяемая в конструкции передних сидений для уменьшения возможности получения травмы от внезапного резкого движения головы при ударе сзади. Верхняя часть сидения поддерживает верх спины водителя или пассажира, а подголовник ограничивает возможность откидывания головы назад. Подобная комбинация позволяет снизить риск травм шеи, вызванный резким движением головы при столкновении на небольшой скорости.

Electronic car control systems

Функции электронного управления системами автомобиля с бензиновым двигателем.

На современных автомобилях компьютерные системы управления рабочими процессами двигателей применяются для повышения топливной экономичности, динамических качеств автомобилей, обеспечения экологической безопасности в соответствие с действующими нормами.

Регулирование режимов работы и управление функциональными системами обеспечивается с помощью электронных блоков-модулей (контроллеров).

Назначение компьютерного управления заключается в формировании количественного и качественного состава рабочей смеси, а также в определении момента подачи топлива в цилиндры и искры на свечи зажигания с учетом режимов работы двигателя и состава отработавших газов. С помощью датчиков компьютерной системы определяются показатели режимов работы двигателя и автомобиля (количество поступающего в цилиндры воздуха, положение дроссельной заслонки, температура воздуха во впускном трубопроводе, температура охлаждающей жидкости двигателя, частота вращения коленчатого вала и др.), которые преобразуются в электрический сигнал и передаются в электронный блок управления (ЭБУ). В соответствии с заложенной программой ЭБУ обрабатывает полученные сигналы и выдает команды исполнительным устройствам (форсунки, регулятор холостого хода, реле включения вентилятора, свечи зажигания и др.).

Современные электронные системы имеют наиболее полный подбор модулей, образующих систему (сеть) электронного (компьютерного) управления работой автомобиля.

В зависимости от марки, модели, комплектации автомобиля число и назначение основных и вспомогательных модулей может существенно меняться.

Сеть электронного управления работой автомобиля может включать:

модуль управления функциями двигателя (ЭБУ);

центральный электронный модуль, имеющий множество функций и осуществляющий координацию диагностических функций модулей, аккумулирующий информацию об отказах;

модуль электронного управления дроссельной заслонкой;

модуль управления автоматической коробкой передач;

контроллер антиблокировочной тормозной системы и системы стабилизации, управляющий функциями тормозной системы;

модуль переключателя освещения, управляющий освещением и осуществляющий последовательный обмен данными с центральным электронным модулем;

модуль управления устройствами рулевого колеса;

модуль управления устройствами двери водителя;

модуль управления устройствами дверей пассажиров;

модуль управления устройствами электропривода сиденья водителя;

модуль управления функциями системы микроклимата салона;

модуль управления радиоприемником, звуковоспроизводящим оборудованием ;

Модуль управления функциями автомобильного телефона;

модуль управления функциями люка в крыше;

задний электронный модуль, управляющий электрическими устройствами в задней части автомобиля;

модуль информации для водителя, управляющий функциями комбинации приборов;

модуль дорожной информации;

модуль системы безопасности, управляющий надувными подушками безопасности;

верхний электронный модуль, управляющий электрическими устройствами в верхней части кузова;

модуль управления сигнализацией, управляющий сиреной охранной сигнализации, осуществляющий последовательный обмен данными с верхним электронным модулем;

Основой электронного управления системами автомобиля является компьютерная система управления двигателем.

Система управления бензиновым двигателем.

Система управления двигателем состоит из подсистемы управления распределенной подачей топлива (впрыском топлива) и подсистемы управления зажиганием. Обе подсистемы управляются электронным блоком управления (ЭБУ) и обеспечивают работоспособность двигателя.

Как сложная трехэлементная система (элементы обеспечения информацией — датчики; элементы получения информации, обработки ее и выработки управляющих сигналов — электронные блоки (контроллеры, модули); элементы реализации управляющего сигнала — исполнительные механизмы) компьютерная система управления двигателем использует большое число основных и дополнительных датчиков, сложную систему (сеть) электронных модулей и исполнительных механизмов.

Работа современной системы управления двигателем осуществляется в следующем порядке.

С помощью электрического топливного насоса, расположенного, как правило, в топливном баке, бензин, проходя топливный фильтр, поступает в рампу форсунок, откуда подается в цилиндры при электрическом управлении открытием соответствующих форсунок. Давление подаваемого топлива регулируется клапаном регулятора давления и равно 0,285...0,325 МПа. Количество подаваемого в цилиндры топлива зависит от времени открытия электрических клапанов форсунок и строго соответствует количеству поступающего во впускной трубопровод двигателя воздуха, измеряемого датчиком массового расхода воздуха и корректируемого в соответствии с сигналами от датчиков положения дроссельной заслонки и температуры воздуха. Электронный блок управления в соответствии со специальной программой обрабатывает все поступающие в него данные и контролирует включение электрического бензонасоса, вентилятора системы охлаждения двигателя, кондиционера, компрессора турбонаддува и в соответствии с режимами работы двигателя и автомобиля обеспечивает впрыск топлива форсунками, поддерживая заданный состав топливно-воздушной смеси (отношение количества топлива к воздуху равно 1 к 14,7).

Моменты подачи топлива и искры на свечи зажигания, выдаваемые ЭБУ в качестве исполнительных команд на топливные форсунки и катушки зажигания, зависят от входящих в ЭБУ сигналов датчиков синхронизации, фазы, температуры охлаждающей жидкости двигателя, детонации и содержания кислорода в отработавших газах (ƛ(лямбда)-зонда).

В силу сложности компьютерных систем их отказы трудно диагностировать обычными методами, а их последствия (прекращение транспортного процесса, увеличение расхода топлива и токсичности отработавших газов) трудно устранять.

Наиболее часто отказывающими элементами системы управления работой бензиновых двигателей являются:

электрические цепи — окисление контактов и обрыв проводов (35 %),

топливный насос (22 %),

клапан холостого хода (10%),

элементы системы зажигания (9%),

форсунки (8 %),

датчик кислорода (7 %),

датчики и реле (6 %),

электронный блок управления (3 %).

Система впрыска.

Топливные системы с впрыском бензинового топлива классифицируются по различным признакам.

1.По месту привода топлива:

центральный одноточечный (моно-) впрыск с единственной механической или электромагнитной форсункой, расположенной во впускном коллекторе;

распределенный впрыск с числом форсунок, соответствующим числу цилиндров, расположенных во впускном коллекторе перед впускными клапанами;

непосредственный впрыск в цилиндры

2.По способу подачи топлива: непрерывный и прерывистый впрыск.

3.По типу узлов, дозирующих топливо (плунжерные насосы, распределители, форсунки, регуляторы давления и т.д.).

4.По способу регулирования количества смеси: пневматическое, механическое, электронное.

5.По основным параметрам регулирования состава смеси: разрежению во впускной системе, углу поворота дроссельной заслонки, расходу воздуха.

Применение систем впрыска позволяет добиться следующих преимуществ:

обеспечить оптимальное смесеобразование на всех режимах;

повысить мощность двигателя;

уменьшить расход топлива;

уменьшить объем выброса вредных веществ;

облегчить пуск холодного двигателя и др.

К недостаткам систем впрыска следует отнести усложнение конструкции автомобиля, повышение его стоимости, повышение требований к бензину (чистота, октановое число), сложность в обслуживании (необходимость применения специального оборудования).

В настоящее время системы впрыска оснащаются отдельным ЭБУ, функции которого заключаются в обработке информации, поступающей с различных датчиков, управлении исполнительными механизмами, системой зажигания (в современных двигателях системы впрыска топлива и зажигания перестают быть независимыми и становятся компонентами все более усложняющихся интегральных систем управления работой двигателя) и обеспечении требуемых характеристик подачи топлива на различных режимах работы двигателя.

Наиболее эффективными по характеристике расхода топлива и экологическим показателям, а значит и наиболее перспективными, являются двигатели с электронным (компьютерным) управлением распределенным впрыском топлива. Однако характеристика работы большой группы деталей и элементов, формирующих топливную систему с впрыском, повышенные требования к качеству топлива и регулировкам — все это определяет значительный перечень признаков неисправностей системы.

Повышение надежности элементов компьютерной системы, а также предупреждение отказов и неисправностей достигается использованием функций электронного обеспечения работы двигателя, которое позволяет не только оптимально управлять рабочими процессами впрыска, но также осуществлять диагностирование технического состояния как подключением внешнего диагностического оборудования, так и использованием встроенных функций самодиагностики.

При встроенной диагностике ЭБУ фиксирует отклонения рабочих параметров в управлении работой двигателя и регистрирует их в виде кодов неисправностей, сигнализируя при движении автомобиля или при ТО и ремонте об отклонении параметров технического состояния от установленных норм.

Предупреждения о неисправностях в компьютерной системе отображаются загоранием специальной лампы диагностики с рисунком двигателя или надписью «проверь двигатель» {«check engine»).

При использовании специальной технологии контроля, разрабатываемой производителем автомобилей, коды неисправностей считываются с помощью диагностической лампы или специального диагностического сканера (тестера), подсоединяемого к диагностическому разъему.

Результаты диагностирования системы впрыска являются основными при определении комплекса операций ТО и TP топливной системы, что связано с высокой технологической сложностью и стоимостью монтажно-демонтажных, разборочно-сборочных и регулировочных работ системы впрыска, а также с нецелесообразностью частых разборок сопряженных соединений.

Современные системы впрыска оснащены встроенной диагностической системой со следующими функциями: самодиагностикой, функциональными и контрольными испытаниями. Распознавание неисправности происходит путем непрерывного циклового процесса сравнения показателей датчиков и систем на любых режимах работы с заложенными в блоке управления матрицами рабочих значений данных параметров (частота цикла на автомобилях различных производителей может отличаться). Несоответствие полученного рабочего значения требуемому для заданного режима работы распознается как неисправность, о чем водитель информируется характерным сигналом на рабочей панели автомобиля. Появление сигнала (сигналов) говорит о необходимости оперативного считывания и распознавания характера неисправности или отказа элемента автомобиля с использованием средств внутреннего диагностирования (если они предусмотрены в конструкции автомобиля), либо через подключение внешнего диагностического оборудования.

Доступ к диагностической системе осуществляется через гнездо разъем) на диагностическом блоке при включенном зажигании.

Самодиагностика предназначена для оперативного считывания нформации о неисправностях и отказах, накопленных в процессе текущей эксплуатации автомобиля. Для накопления информации о неисправностях используется встроенный диагностический блок управления, который способен запоминать 3...4 неисправности одновременно (общее число неисправностей, которые могут быть обнаружены, составляет 13...15). Функция самодиагностики заложена в электронный блок управления работой двигателя, через который посредством внутрисистемного информационного обмена она может быть применена и для других систем штатного электронного контроля работы автомобиля (автоматическая коробка передач, антиблокировочная система тормозов, противобуксовочная система ведущих колес и система стабилизации движения автомобиля, климат-контроль и т.д.). Коды неисправностей запоминаются при обнаружении сигнала неисправности. Сигнал может незамедлительно отображаться при нажатии испытательной кнопки на диагностическом блоке.

Блок управления снабжен памятью для запоминания кода неисправности и адаптивной программой, которая способна сохранять информацию в течение по меньшей мере 10 мин после прекращения подачи электроэнергии.

Функциональное испытание предназначено для диагностирования системы в режиме имитирования последовательного выхода из строя функциональных элементов, обеспечивающих правильную работу системы впрыска (например, датчика положения дроссельной заслонки, после того, как он выйдет из положения холостого хода или из положения «работы при полной нагрузке»; блока электронного управления системой зажигания; блока управления автоматической коробкой передач).

Контрольное испытание позволяет проверить работоспособность элементов системы впрыска как до, так и после функционального испытания средствами внутреннего диагностирования.

Режим функционального и контрольного испытания включается после комбинации кратковременных нажатий испытательной кнопки диагностического блока внутри автомобиля.

Для поиска неисправностей в системах впрыска топлива в ряде случаев требуется подсоединение специального измерительного блока — диагностического ключа, позволяющего определить место (в проводке, разъемах или самих компонентах, на которых замеры на разъемах блока управления невозможно сделать) и характер неисправности. Диагностический ключ подсоединяется к диагностическому блоку. Считывание и запись кодов неисправностей, обнаруженных в топливной системе, производится при включенном зажигании и с соблюдением необходимых мер, определяющих технологию диагностирования с использованием диагностического ключа. Распознавание и устранение неисправностей производится в соответствии с таблицей кодов неисправностей. Для каждой серии автомобилей производителями автомобилей могут предлагаться принципиально отличающиеся таблицы. Использование диагностического ключа не требует высокой квалификации оператора, так как основным его назначением является распознавание и запись неисправностей, возникших в процессе текущей эксплуатации автомобиля. Поэтому в роли оператора может выступать водитель или владелец транспортного средства.

Для проведения диагностирования необходимо выполнить ряд подготовительных операций, целью которых является привести систему в требуемое для начала диагностирования техническое состояние. Для этого необходимо проверить следующие элементы: систему подачи воздуха (рекомендуется снять регулятор холостого хода, промыть его составом для прочистки карбюраторов и смазать); датчик положения дроссельной заслонки (необходимо убедиться в том, что диск потенциометра чистый); ограничитель хода дроссельной заслонки (возможно, его положение было нарушено, в результате чего выходное напряжение датчика положения дроссельной заслонки вышло за пределы нормы); трос привода дроссельной заслонки (необходимо удостовериться, что привод правильно отрегулирован и имеет требуемый свободный ход); ход рычагов и тяг привода дроссельной заслонки (они должны двигаться свободно и без заедания); ряд других элементов в зависимости от сложности системы.

Чаще всего выявление неисправности в конкретном элементе современной системы впрыска с полностью электронным управлением говорит о необходимости дорогостоящего ремонта этого элемента или его замены. Однако прежде чем принимать решение с замене дорогостоящей запасной части, следует уточнить диагноз.

Одной из наиболее частых неполадок может быть понижение оборотов двигателя на холостом ходу, сопровождающееся загоранием контрольной лампы на панели самодиагностики и высвечиванием кода неисправности, который указывает на неисправность потенциометра дроссельной заслонки. Обычно в этом случае потенциометр рекомендуется заменить.

Потенциометр является устройством, напряжение которого находится в прямой зависимости от угла открытия дроссельной заслонки и изменяется от 0,5 до 4,5 В. При перемещении дроссельной заслонки напряжение должно возрастать плавно. Важно удостовериться, что выходное напряжение находится в требуемых пределах.

Потенциометр проверяют при включенном зажигании с помощью очень чувствительного вольтметра, поскольку достаточно малейшего отклонения выходного напряжения потенциометра от нормы, чтобы произошли нарушения в работе системы впрыска Поэтому обычные тестеры в данном случае непригодны. Лучше всего использовать для этого осциллограф, так как он увереннее воспринимает любые электрические сигналы, включая наведенные. Наведенные электрические сигналы могут имитировать неисправности, даже в том случае, если выходное напряжение соответствует требуемому значению. Шумовой сигнал воспринимается ЭБУ как сигнал потенциометра, что может приводить к нарушению работы регулятора холостого хода. Побочным эффектом этого может стать увеличение расхода топлива.

В большинстве современных систем впрыска выходное напряжение потенциометра дроссельной заслонки используется в качестве сигнала о предстоящем ускорении автомобиля. Поэтому ещё одним признаком неисправности потенциометра является избыточная подача топлива.

Особенностью отказа потенциометра является то, что его невозможно вернуть в рабочее состояние путем очистки или ремонта. Почти всегда это герметичное неразборное устройство, поэтому, если оно действительно неисправно, его можно только заменить.

Другой неисправностью современной системы впрыска, является неустойчивая работа двигателя при холодном пуске, иногда сопровождающаяся обратными хлопками во впускной коллектор. Чаще всего это является следствием обеднения смеси, вызванным ошибками в программном обеспечении ЭБУ. Это может означать как его выход из строя, так и неисправность одной или нескольких форсунок.

Чтобы проверить форсунки необходимо их снять, очистить и убедиться в их исправности. Для такой проверки требуется специальное оборудование. Если проверка показывает, что форсунки исправны, следует проверить программу ЭБУ, так как его ремонт обходится чаще всего дешевле, чем покупка нового. Вместе с проверкой ЭБУ необходимо проверить отсутствие подсоса воздуха в систему впрыска, что может вызвать обеднение смеси. Обычно подобные неисправности проявляются при значительном суммарном пробеге автомобиля, когда двигатель начинает «стареть». Этому способствуют образование нагара на клапанах и общий износ двигателя.

Современные автомобили чаще всего оснащены каталитическими нейтрализаторами и имеют систему ограничения вредных выбросов с обратной связью от ƛ-зонда. Если состав выхлопных газов не соответствует норме (топливная смесь слишком бедная или богатая), то прежде чем проверять на работоспособность ƛ-зонд, необходимо проверить выходное напряжение датчика абсолютного давления.

Считывание может осуществляться с помощью тестера (мотор-тестера, автотестера, сканера), подключенного к диагностическому разъему (расположение диагностического разъема различными производителями определяется по-разному, например перед селектором коробки передач в салоне водителя. При подключении диагностического сканера (тестера) более полно определяется техническое состояние компьютерной системы (коды и их описание), при этом имеется возможность выполнить корректировки по составу топливно-воздушной смеси, углу опережения зажигания и др. Система управления двигателем может иметь 65...135 кодов неисправностей для диагностики. Каждый код неисправности может дать информацию о том, вызвана ли неисправность обрывом, коротким замыканием на электропитание (+) или коротким замыканием на «массу». Это дает в общей сложности 195...405 различных кодов неисправностей. 

Применение внешнего диагностического оборудования позволяет на более высоком качественном уровне выполнять в штатном режиме функциональные и контрольные испытания при диагностировании.

Система зажигания.

Система зажигания за последние 15...20 лет претерпела заметную эволюцию: от классической контактной до полностью бесконтактной системы с электронным управлениек всеми функциями.

Развитие системы зажигания определено стремлением добиться оптимизации ряда показателей и характеристик таких как: исключение контактных элементов в цепи системы в целях избежания искрения; минимизация и исключение потерь напряжения в цепи высокого напряжения системы; исключение магнитных колебаний в цепях элекгрооборудования; максимальный контроль за основными показателями системы зажигания на всех режимах работы двигателя: силой пробивного напряжения на электродах свечи, продолжительностью горения искры, регулированием опережения зажигания; максимальная доступность для диагностирования и ремон топригодность; максимальная защита от несанкционированного (процедурно не соблюденного) включения; другие.

Контактная или классическая батарейная система зажигания характеризуется наличием в ее цепи таких элементов, как контактный прерыватель, распределитель (роторного типа), одна (две) трехклеммовая катушка зажигания и т.д. Главными недостатками контактной системы зажигания являются: большой ток, проходящий через прерыватель и вызывающий электроэрозионный износ контактов; искрящиеся высоковольтные контакты в распределителе. Эти недостатки в первую очередь уменьшают срок службы и снижают надежность всей системы зажигания. При увеличении степени сжатия, использовании более бедных рабочих смесей, увеличении частоты вращения коленчатых валов и числа цилиндров контактная система зажигания не обеспечивает решения задач и возросших требований к системе. Поэтому в свое время возникла необходимость применения транзисторных (электронных) систем зажигания.

Функциональное отличие контактно-транзисторной системы зажигания от контактной заключается в том, что в контактно-транзисторной системе зажигания через контакты прерывателя проходят только управляющие импульсы тока (силой около 0,5 А). К первичной цепи катушки зажигания контакты прерывателя не относятся. В цепи контактно-транзисторной системы предусмотрен коммутатор, который позволяет добиться бесконтактного размыкания и замыкания первичной цепи. В ряде случаев коммутатор производится в одном корпусе (блоке) с катушкой зажигания, который монтируется на кронштейне в моторном отсеке. Выполненная в форме блока конструкция позволяет предупредить интерференцию от электромагнитных помех.

Основные особенности контактных систем зажигания при использовании дополнительных электронных блоков: малый ток, протекающий через контакты прерывателя (номинальная сила тока не более 0,3 А); более высокое вторичное напряжение; устройства могут включать в себя электронный октан-корректор (ЭОК); возможность, в случае необходимости, перейти к обычной контактной системе зажигания. Таким образом, электронные блоки в контактных системах зажигания значительно улучшают их характеристики, т.е.: не обгорают контакты прерывателя, так как в несколько раз снижаются протекающие через них токи, делая их только управляющими работой электронного коммутатора (поэтому контакты не обгорают и не требуют частого обслуживания); позволяют существенно увеличить напряжение на свечах, в результате чего допускается некоторое увеличение зазора между электродами свечи; позволяют при затрудненном пуске или в случае пониженного октанового числа, воспользовавшись электронным октан-корректором, непосредственно с места водителя изменить угол опережения зажигания; при пуске или с целью очистки контактов прерывателя можно простым переключением перейти к обычной контактной системе зажигания.

Контактные системы зажигания с дополнительными электронными блоками имеют и недостатки: понижение энергии искры, число элементов системы доходит до 85, что снижает надежность системы зажигания.

Среди основных преимуществ бесконтактных систем зажигания относительно контактных следует выделить следующие.

Контакты прерывателя не обгорают (как при контактной системе) и не загрязняются (как при контактно-транзисторной системе зажигания).

Нет необходимости длительное время устанавливать момент зажигания, не контролируется и не регулируется угол замкнутого (разомкнутого) состояния контактов, в силу их конструктивного отсутствия. В результате двигатель не теряет мощности.

Так как отсутствует размыкание контактов кулачком и нет биения и вибрации ротора распределителя — не нарушается paвномерность распределения искры по цилиндрам, что обеспечивает большую равномерность работы двигателя и, как следствие экономичность и меньшую токсичность.

Современные (бесконтактные) системы зажигания управляются, как и система впрыска, отдельным ЭБУ (контроллером), который для выработки полнофункционального управляющего сигнала должен получать информацию от следующих элементов:

с датчика частоты вращения (положения) коленчатого вал двигателя;

с датчика положения распределительного вала, который подает на блок управления информацию, необходимую для расчет правильной установки зажигания;

с датчика(ов) детонации;

с блока управления автоматической коробки передач, для указания величины снижения крутящего момента при переключении передачи (связь с блоком управления автоматической коробкой передач обеспечивает возможность снижения угла опережения зажигания при переключении передачи);

с блока управления системой впрыска с указанием положения дроссельной заслонки, нагрузки двигателя, температуры охлаждающей жидкости;

со спидометра.

В свою очередь, электронный блок системы зажигания ynpaвляет следующими компонентами:

коммутатором и катушкой зажигания;

реле кондиционера воздуха для временного отключения компрессора кондиционера;

вентилятором системы охлаждения с помощью реле вентилятора;

функцией предупреждения о составе выхлопных газов и др.

Одновременно блок управления системой зажигания выдает информацию на диагностический блок для поиска неисправностей.

Диагностирование электронной системы зажигания производится аналогично технологии диагностирования системы впрыска.

Распознавание неисправностей осуществляется в соответствии с кодами.

Чаще всего выявление неисправности начинается с проверки исправности электрической проводки. Проверяется состояние проводов свечей, которые могут быть протерты или иметь порезы. Проводя проверку системы зажигания, необходимо соблюдать меры безопасности, помня о том, что при запущенном двигателе напряжение в высоковольтной части системы достигает нескольких десятков тысяч вольт. Неосторожность может привести к получению травмы или (и) к выходу из строя электрооборудования.

Следующим этапом подготовки к диагностике является проверка с использованием руководства по ремонту данной системы и при необходимости регулировка величины зазора искрового промежутка. Далее, после выполнения всех подготовительных работ производится непосредственно диагностирование электронной системы зажигания в соответствии с методикой, принятой для данного диагностического оборудования.

Все работы по выявлению и устранению неисправностей электронных систем автомобиля выполняют специально подготовленным персоналом на диагностических постах. Посты оснащаются комплектом приборов и приспособлений.

Для двигателя ВАЗ-21102 данный комплект включает: пробник электричес¬кий, специальный тестер, осциллограф-мультиметр, перемычку, разрядник, пробник для цепи форсунок, топливный манометр, прибор для проверки форсунок, вакуумный насос, съемник высоковольтных проводов, набор адаптеров, манометр для измерения давления в системе выпуска. Восстановление технического состояния системы управления работой двигателя проводится по разработанным производителем автомобилей алгоритмам (диагностическим картам) для каждого кода неисправности.

» Электронные системы автомобиля — в помощь водителю

Вспомогательные электронные системы предназначены для создания условий способствующих улучшению управления автомобилем. Разработано множество различных электронных систем действующих совместно с агрегатами автомобиля, которые можно классифицировать:

  • Вспомогательные системы, работающие совместно с механизмами тормозного контура:
    — автоблокировочные,
    — экстремального торможения.
  • Соблюдение курсовой устойчивости.
  • Соблюдение дистанции при движении между автомобилями.
  • Поддержка перестроения автомобилей при движении со сменой полос автотрассы.
  • Парковка с использованием ультразвуковых сигналов.
  • Использование камеры заднего вида.
  • Bluetooth.
  • Круиз-контроль

Антиблокировочная тормозная система

АБС () – специально для повышения эффективности работы тормозов при различных дорожных погодных условиях.

Считывает скорость вращения каждого колеса и при усиленном торможении препятствует блокированию и скольжению, тем самым оставляет возможность управлять и маневрировать транспортным средством до полной остановки.

В ее состав входит:

  • электронный блок управления;
  • механизм – модулятор регулировки давления рабочей (тормозной) жидкости, (блок ABS);
  • показывающих угловую скорость вращения колес.

Система экстремального торможения

Предназначена для экстренного торможения в условиях требующих немедленной остановки автомобиля. И помогает водителю дожимать педаль тормоза, при расчете малоэффективности торможения.

Состоит из блоков:

  • гидравлического модуля с компонованного с блоком АБС и насосом обратной подачи тормозной жидкости;
  • датчика, показывающего давление в гидравлическом контуре;
  • датчика, фиксирующего скорость вращения колес;
  • устройства выключения сигнала передаваемого на усилитель экстремального торможения.

Система курсовой устойчивости автомобиля

Позволяет стабилизировать поперечную динамику движения автомобиля, предотвращает занос транспортного средства. Действует совместно с АБС и системой управления двигателем.

В ее состав входит:

  • электронный блок-контроллер;
  • датчик, показывающий положение рулевого колеса;
  • датчик давления в системе тормозов.

Курсовая устойчивость показала себя с высокой эффективностью на обледенелых дорогах, помогая водителю в трудных ситуациях

Система соблюдения расстояния между движущимися автомобилями

САРД – электронная система соблюдения необходимого, заданного расстояния между автомобилями, работающая в автоматическом режиме. Эффективность действия САРД возможна при скорости движения до 180 км/час и действует совместно с системой регулирования скорости, позволяя водителю управлять автомобилем в более комфортных условиях.

Система поддержки смены полос движения

Предназначена для контроля окружающей обстановки при осуществлении маневрирования на трассе. Позволяет с помощью радара контролировать мертвую зону вокруг автомобиля и предупреждает водителя о возникновении помех при движении, предотвращает дорожно-транспортные пришествия.

Электронная система парковки автомобиля

Предназначена для обеспечения безопасности маневров при парковке автомобиля. Электронная система состоит из нескольких ультразвуковых датчиков, которые передают информацию водителю о возможных препятствиях с помощью специальных звуковых и визуальных сигналов. Сигнальные датчики работают в режиме приема-передачи сигнала и позволяют использовать их с наибольшей эффективностью.

Камера заднего вида

Предназначена для передачи визуальных изображений позади автомобиля. Совместное использование звуковых датчиков и камеры заднего вида предотвращает возникновение ситуаций столкновения с препятствиями позади транспортного средства при маневрах.

Вспомогательная система Bluetooth

Bluetooth – обеспечивает мобильную связь для различных устройств, установленных на автомобиле:

  • телефон;
  • ноутбук.

Помогает водителю меньше отвлекаться от дороги. Обеспечивая безопасность и комфорт при вождении автомобиля.

Состоит из блоков:

  • электронного приемо-передающего блока;
  • антенны.

Круиз-контроль

Помогает водителю, увеличивая комфорт вождения.

Поддерживает заданную скорость транспортного средства вне зависимости от рельефа местности, на спусках и подъемах дороги. Имеет управление с добавлением скорости и лимита скорости, так же присутствует запоминание установленного лимита. Отключается при нажатии на педаль тормоза или сцепления, так же имеет свой собственный выключатель. При нажатии на педаль газа транспортное средство ускоряется, после отпускания, возвращается к своему лимиту скорости.

Пользователь имеет возможность значительно упростить и автоматизировать использование систем автомобиля с учетом автономного управления.

Электронная диагностика систем автомобиля проводиться при прохождении каждого технического обслуживания официальным дилером. Выдается бумага о наличии неисправностей с распечаткой кодов ошибок. Однако существует небольшая грань между установленным оборудованием и штатным. По штатному оборудованию, дилер обязан предоставить ремонт и его диагностику, а вот по установленному может вам отказать, тем более если оборудование устанавливалось в гаражных условиях с внедрением в проводку и изменением алгоритмов работы. В таких ситуациях если машина на гарантии, то можно лишиться гарантийного обслуживания. Будьте осторожны при установке дополнительного оборудования!

Блок управления дверями автомобиля — функции сети CAN Пежо 308 — недостатки и отзывы владельцев новой модели
Что такое АБС (ABS) — антиблокировочная система тормозов
Тормозная система автомобиля — ремонт или замена Что такое система Start-Stop?
Система охлаждения двигателя автомобиля, принцип действия, неисправности

В данной статье рассматриваются электронные компоненты автомобилей, что они собой представляют и как работают.

ABS («ANTIBLOCK BRAKE SYSTEM»)

ABS – тормозная антиблокировочная система. Данная система позволяет избежать блокировки колес при резком торможении или при торможении на скользкой дороге. Блок управления несколько раз прижимает и отпускает колодки тормозные, в результате чего колеса начинают проворачиваться. состоит из: датчиков ускорения (скорости), установленных на колесных ступицах; управляющих клапанов, которые установлены в магистрали системы торможения; блока управления, получающего сигналы с датчиков и контролирующих работу клапанов.

Во время торможения ABS постоянно и точно определяет скорости вращения всех колес. Если одно или несколько колес замедляют движение быстрее максимально рассчитанной скорости и, исходя из показаний акселерометров, то ABS командует в системе торможения, ограничивающему тормозное усилие на колесе (колесах). Тормозное усилие после того как вращение колеса приходит в допустимую норму восстанавливается.

4WS («4 WHEEL STEER»)

4WS – 4 управляемых колеса. Специальные рулевые механизмы встроены в заднюю подвеску, с помощью которых и поворачиваются колеса. Управление осуществляется специальным электронным блоком на основе данных о скорости, угле поворота руля и колес и т.д., полученных от датчиков автомобиля.

Работа системы осуществляется в двух режимах:

  1. При малой скорости задние колеса поворачиваются в противоположном направлении от передних колес, и при выполнении маневра руль вращается на меньший угол. То есть увеличивается чувствительность рулевого управления и автомобиль становится более маневренным.
  2. При большой скорости движения при перестроении или быстром вираже задние колеса поворачиваются в ту же сторону только на небольшой угол, что и передние колеса.

ACC («ACTIVE CRUISE CONTROL»)

ACC – активный круиз контроль. В данной системе используется трехлучевой радар для слежения за дорогой впереди автомобиля. Если впереди идущий автомобиль перестраивается на вашу полосу, то ACC определяет его направления движения и положение, а также рассчитывает ориентировочную скорость на основе данных сигнала радара. Система изменяет скорость автомобиля, чтобы сохранить безопасное расстояние между автомобилями. Уменьшение скорости осуществляется путем уменьшения тяги автомобиля или при помощи тормозов. Значение безопасного расстояния можно регулировать настройками.

ACC («ACTIVE COMENING CONTROL»)

ACC – автоматическая система стабилизации поперечного положения кузова в поворотах и изменяемого хода подвесок. Также может называться ACE, CATS, CBC, BCS. ACC работает вместе с ABS , чтобы предотвратить снос задней оси при поворотах на высокой скорости. Работа ACC построена на перераспределении нагрузок между элементами подвески. При боковом наклоне (крене) тяги перемещаются в различные стороны (один опускается, другой поднимается). Средняя часть закручивается.

АСС пытается, как бы поднять кузов со стороны наклона, а с противоположной – опустить. Таким образом, АСС обеспечивает выравнивание автомобиля к плоскости дороги. Помимо выравнивания, также достигается повышение сцепных свойств колес автомобиля с дорогой при повороте.

AGS («ADAPTIVE GETRIEBE-STEUERUNG»)

BA («BRAKE ASSIST»)

BA – электронная система управления давлением в гидравлической системе тормозов. Также называют PABS, PA, BAS. BA самостоятельно увеличивает давление в тормозной системе при необходимости либо недостаточного усилия на педаль.

Причем повышение давления происходит намного быстрее, чем это мог бы сделать человек. Распознавание экстренного торможения происходит по скорости нажатия педали и давлению на педаль

D-4

D-4 – технология непосредственного впрыска топлива. Топливо подается непосредственно в камеру сгорания под высоким давлением. Благодаря данной технологии значительно увеличиваются эксплуатационные характеристики двигателя. Снижается топливный расход, уменьшается уровень вредных веществ в газе.

DAC («DOWNHILL ACESS CONTROL»)

DAC – система помощи спуска по склону. При движении по крутым спускам, если система DAC определяет, что скорость вращения колес меньше скорости автомобиля, то она в автоматическом режиме изменяет тормозное усилие на разных колесах.

DAC обеспечивает поддержание скорости в районе 5-7км/ч, которая идеально подходит при крутых спусках, и 3-5км/ч при движении задним ходом на крутых спусках.

DBC («DYNAMIC BRAKE CONTROL»)

DBC – система динамического контроля над торможением. DBC является дополнением к DSC (динамический контроль устойчивости). Примерно 90% водителей не в состоянии вовремя выполнить экстренное торможение. Несмотря на резкое нажатие на педаль тормоза, давление на педаль недостаточное и последующее увеличение давления увеличивает тормозную мощность незначительно. В итоге тормозная мощность используется не полностью.

Система DBS позволяет ускорить и усилить нарастание давления в тормозной системе при экстренном торможении и обеспечивает минимальный тормозной путь даже при несильном нажатии педали тормоза. Определяющими величинами являются данные: скорость нарастания давления и прикладываемое к педали усилие. Система DBS работает не по вакуумному принципу, а по принципу гидравлического усиления. При экстренном торможении такая система обеспечивает наилучшую и наиболее точную дозировку тормозного усилия.

DDE («Diesel Digital Elekronik «)

DDE – электронная цифровая система . DDE регулирует момент начала впрыска, количество подаваемого топлива и давление наддува, что обеспечивает наиболее оптимальное соответствие данных параметров во всех режимах работы двигателя, даже в экстремальных режимах.

Автомобиль становится экономичнее (топливный расход), тяговитым (работа двигателя плавная) и экологичнее (понижается токсичность в выхлопных газах). Отслеживание усилия нажимания на педаль газа, её положение позволяет точнее рассчитать время, количество, а также давление впрыска топлива, что адаптирует рабочий режим двигателя под различные условия и стиль езды.

DME («Digital Motor Elekronik»)

DME — электронная цифровая система управления двигателем. DME осуществляет управление и контроль всеми функциями (зажигание, впрыск топлива). DME поддерживает оптимальную мощность при наименьших токсичности и топливном расходе. Датчики постоянно отслеживают все параметры, которые оказывают влияние на работу двигателя. Приходящие данные от датчиков оцениваются и кодируются в команды систем зажигания и впрыска.

DME обрабатывает порядка 1000 сигналов каждую секунду, среди которых сигналы от датчиков температуры системы охлаждения, положения дроссельной заслонки, плотности и температуры воздуха, положения коленчатого вала, скорости автомобиля, положения педали газа. DME проводит сравнение всех входящих сигналов с реакциями остальных систем. При неисправности одного из датчиков DME использует сохраненное значение по умолчанию для данного параметра из памяти. Также DME ведет отслеживание за работоспособностью электрооборудования. При помощи различных датчиков замеряется уровень заряда аккумулятора и его состояние, а также потребление электроэнергии в текущий момент. Поддерживая аккумуляторную батарею в работоспособном состоянии, DME обеспечивает в произвольный момент гарантированный пуск двигателя.

EBD («ELECTRONIC BRAKE DISTRIBTION»)

EBD – электронная система распределения тормозного усилия. Также называют EBV. Работает совместно с ABS и при помощи электроники обеспечивает равномерное распределение между всеми колесами тормозного усилия. Это необходимо для оптимального сцепления каждого колеса с дорогой исходя из скорости, загрузки автомобиля, характера покрытия и т.п.

В большинстве случаев применяется для исключения возможности блокировки колес на задней оси. EBD начинает работать до ABS, либо после несрабатывания последней в результате поломки.

EBM («ELECTRONIC BRAKE MANAGEMENT»)

EBM – система электронного управления тормозами. По сути, это общее название систем контроля тормозных систем и управляемости этих систем, таких, как ABS, ACS+T, DSC и DBC. Опираясь на показания различных датчиков, EBM определяет уровень вмешательства, необходимый для восстановления хорошей управляемости автомобилем, задействовав одну либо сразу несколько систем управления. К датчикам, показания которых использует EBM, относятся: угол крена; угол поворота рулевого колеса; датчики скорости вращения колес и силы торможения.

EBS («ELECTRONIC BRAKING SYSTEM»)

EBS – электронная система торможения. В EBS педаль тормоза не имеет механического соединения с тормозной системой. Другое название «электронная педаль», передвижение которой преобразуется в виде электрического сигнала и подается в блок управления. Далее анализируются данные, полученные от датчиков (скорость, нагрузка, угол поворота рулевого колеса, поперечное ускорение). На основе анализа этих данных электроника дает команду своим исполнительным механизмам на регулирование давления в контурах системы тормоза.

ECT («ELECTONICALLY CONTROLED TRANSMISSION»)

ECT – электронная система управления переключением передач в АКПП последнего поколения. Учитывая положение дроссельной заслонки, скорость автомобиля, температуру двигателя, определяет какую передачу включать. Тем самым обеспечивает наиболее мягкое переключение передач, и увеличивает ресурс трансмиссии и двигателя. Есть возможность установки алгоритма переключения передач: «зима», «эконом», «спорт».

Заключение!

Эти системы в значительной мере повлияли на коренное изменение сущности современного автомобиля. Благодаря электронике узлы и механизмы стали работать надежнее, а сам транспорт – безопаснее.

  • Новости
  • Практикум

Лимузин для президента: раскрыты очередные подробности

Сайт Федеральной патентной службой продолжает оставаться единственным открытым источником информации об «автомобиле для президента». Сначала НАМИ запатентовал промышленные модели двух автомобилей - лимузина и кроссовера, которые являются частью проекта «Кортеж». Затем намишники зарегистрировали промышленный образец под названием «Панель приборов автомобиля» (скорее всего, именно...

АвтоВАЗ выдвинул в Госдуму собственного кандидата

Как сказано в официальном сообщении АвтоВАЗа, В. Держак проработал более 27 лет на предприятии и прошел все этапы становления карьеры - от рядового рабочего до мастера. Инициатива выдвижения представителя трудового коллектива АвтоВАЗа в Госдуму принадлежит коллективу предприятия и была озвучена 5 июня во время празднования дня города Тольятти. Инициативу...

В Сингапуре появятся беспилотные такси

Во время испытаний на дороги Сингапура выйдут шесть модифицированных Audi Q5, способных передвигаться в автономном режиме. В прошлом году такие автомобили беспрепятственно преодолели путь от Сан-Франциско до Нью-Йорка, сообщает Bloomberg. В Сингапуре беспилотники будут двигаться по трем специально подготовленным маршрутам, оборудованных необходимой инфраструктурой. Протяженность каждого маршрута составит 6,4 ...

Mitsubishi скоро покажет туристический внедорожник

Аббревиатура GT-PHEV расшифровывается как Ground Tourer, автомобиль для путешествий. При этом концептуальный кроссовер должен провозгласить «новую концепцию дизайна Mitsubishi - Dynamic Shield». Силовой агрегат Mitsubishi GT-PHEV - это гибридная установка, состоящая из трех электродвигателей (один - на передней оси, два - на задней), чтобы...

На российском рынке появилась новая премиум-марка

Genesis - это премиум-подразделение концерна Hyundai, которое поэтапно выходит на мировые рынки. Вначале продажи премиальных «корейцев» начались на родине, а затем автомобили, которые задают «высочайшие стандарты производительности, дизайна и инноваций» (во всяком случае, так считают представители новообразованной марки), предложили обеспеченной публике из США, Ближнего Востока, ...

Фото дня: гигантская утка против водителей

Путь автомобилистам на одной из местных автотрасс преграждала… огромная резиновая утка! Фотографии утки моментально разошлись по соцсетям, где у них нашлось немало поклонников. Как сообщает The Daily Mail, гигантская резиновая утка принадлежала одному из местных автомобильных дилеров. Судя по всему, на дорогу надувную фигуру снес...

У Ford Transit на двери не оказалось важной заглушки

Отзыв касается лишь 24 микроавтобусов Ford Transit, которые дилеры марки продали с ноября 2014-го по август 2016-го. Как сообщает сайт Росстандарта, на этих машинах сдвижная дверь оснащена так называемой «детской блокировкой», однако отверстие соответствующего механизма не было прикрыто заглушкой. Оказывается, это является нарушением действующего...

Видео дня: электромобиль набирает 100 км/ч за 1,5 секунды

Электрический болид под названием Grimsel смог разогнаться с места до 100 км/ч за 1,513 секунды. Достижение было зафиксировано на взлетно-посадочной полосе авиационной базы в Дюбендорфе. Болид Grimsel представляет собой экспериментальный автомобиль, разработанный студентами Швейцарской высшей технической школы Цюриха и Университета прикладных наук Люцерна. Автомобиль создан для участия...

Московский каршеринг оказался в центре скандала

Как рассказал один из участников сообщества «Синие Ведерки», воспользовавшийся услугами «Делимобиля», компания в случае ДТП с участием арендованного автомобиля требует от пользователей компенсировать стоимость ремонта и дополнительно взимает штраф. Кроме того, автомобили сервиса не застрахованы по каско. В свою очередь представители «Делимобиль» на официальной странице в Facebook дали официальные...

Mercedes выпустит мини-Гелендеваген: новые подробности

Новая модель, призванная стать альтернативой изящному Mercedes-Benz GLA, получит брутальную внешность в стилистике «Гелендевагена» - Mercedes-Benz G-класса. Немецкому изданию Auto Bild удалось разузнать новые подробности об этой модели. Итак, если верить инсайдерской информации, то Mercedes-Benz GLB будет отличаться угловатым дизайном. С другой стороны, полного...



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»