Эдс батареи формула. Аккумуляторные батареи. Текущее обслуживание аккумуляторной батареи

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

ЭДС аккумулятора (Электродвижущая сила) это разность электродных потенциалов при отсутствии внешней цепи. Электродный потенциал складывается из равновесного электродного потенциала. Он характеризует состояние электрода в состоянии покоя, то есть отсутствии электрохимических процессов, и потенциала поляризации, определяющемуся как разность потенциалов электрода при зарядке (разрядке) и при отсутствии цепи.

Процесс диффузии.

Благодаря процессу диффузии, выравниванию плотности электролита в полости корпуса аккумулятора и в порах активной массы пластин, электродная поляризация может сохраняться в аккумуляторе при отключении внешней цепи.

Скорость прохождения диффузии напрямую зависит от температуры электролита, чем выше температура, тем быстрее проходит процесс и может сильно отличаться по времени, от двух часов до суток. Наличие двух составляющих электродного потенциала при переходных режимах привело к разделению на равновесную и не равновесную ЭДС аккумулятора .
На равновесную ЭДС аккумулятора влияет содержание и концентрация ионов активных веществ в электролите, а так же химические и физические свойства активных веществ. Главную роль в величине ЭДС играет плотность электролита и практически не влияет на неё температура. Зависимость ЭДС от плотности можно выразить формулой:

Где Е – ЭДС аккумулятора (В)

Р – плотность электролита приведённая к температуре 25 гр. С (г/см3) Эта формула истинна при рабочей плотности электролита в пределах 1,05 – 1,30 г/см3. ЭДС не может характеризовать степень разрежённости аккумулятора напрямую. Но если замерить его на выводах и сравнить с расчётным по плотности, то можно, с долей вероятности, судить о состоянии пластин и ёмкости.
В состоянии покоя плотность электролита в порах электродов и полости моноблока одинаковы и равны ЭДС покоя. При подключении потребителей или источника заряда, изменяется поляризация пластин и концентрация электролита в порах электродов. Это приводит к изменению ЭДС. При заряде значение ЭДС увеличивается, а при разряде уменьшается. Это связано с изменением плотности электролита, который участвует в электрохимических процессах.

Можно ли по ЭДС точно судить о степени заряженности аккумулятора?

Электродвижущей силой (ЭДС) аккумулятора называется разность его электродных потенциалов, измеренная при разомкнутой внешней цепи:

Е = φ+ – φ–

где φ+ и φ– – соответственно потенциалы положительного и отрицательного электродов при разомкнутой внешней цепи.

ЭДС батареи, состоящей из n последовательно соединённых аккумуляторов:

В свою очередь, электродный потенциал при разомкнутой цепи в общем случае состоит из равновесного электродного потенциала, характеризующего равновесное (стационарное) состояние электрода (при отсутствии переходных процессов в электрохимической системе), и потенциала поляризации.

Этот потенциал в общем случае определяется как разность между потенциалом электрода при разряде или заряде и его потенциалом в равновесном состоянии в отсутствии тока. Однако следует отметить, что состояние аккумулятора сразу после выключения зарядного или разрядного тока не является равновесным вследствие различия концентрации электролита в порах электродов и межэлектродном пространстве. Поэтому электродная поляризация сохраняется в аккумуляторе довольно длительное время и после отключения зарядного или разрядного тока и характеризует в этом случае отклонение электродного потенциала от равновесного значения за счёт переходного процесса, то есть в основном вследствие диффузионного выравнивания концентрации электролита в аккумуляторе от момента размыкания внешней цепи до установления равновесного стационарного состояния в аккумуляторе.

Химическая активность реагентов, собранных в электрохимическую систему аккумулятора, и, следовательно, изменение ЭДС аккумулятора весьма незначительно зависит от температуры. При изменении температуры от –30°С до+50°С (в рабочем диапазоне для АКБ) электродвижущая сила каждого аккумулятора в батарее изменяется всего на 0,04 В и при эксплуатации аккумуляторов им можно пренебречь.

С повышением плотности электролита ЭДС повышается. При температуре +18°С и плотности 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС равной2,12 В. Аккумуляторная батарея из шести элементов обладает ЭДС равной 12,72 В(6 ? 2,12 В = 12,72 В).

По ЭДС нельзя точно судить о степени заряженности аккумулятора.
ЭДС разряженного аккумулятора с большей плотностью электролита будет выше, чем ЭДС заряженного аккумулятора, но имеющего меньшую плотность электролита. Величина ЭДС исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется от 1,92 до 2,15 В.

При эксплуатации аккумуляторных батарей путём измерения ЭДС можно обнаружить серьёзную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).

ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление вольтметране менее 300 Ом/В). В ходе выполнения измерений вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток!


***
Электродвижущая сила (ЭДС) – скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока.
ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

Активные вещества положительных и отрицательных пластин обладают определенными потенциалами относительно электролита. Разность этих потенциалов определяет ЭДС аккумулятора, которая не зависит от количества активного вещества в пластинах. ЭДС аккумулятора зависит в основном от плотности электролита, эта зависимость определяется эмпирической формулой:

где d – плотность электролита в порах активной массы пластин. Напряжение аккумулятора при заряде больше, чем величина ЭДС, на величину внутреннего падения напряжения:

U З = E + I З ∙ r 0 ,

где r 0 – внутреннее сопротивление аккумулятора, а при разряде соответственно:

U Р = E – I Р ∙ r 0 .

У разряженного свинцового аккумулятора плотность составляет d = 1,17, тогда Е = 0,85 + 1,17 = 2,02 В. У заряженного аккумулятора d = 1,21, тогда Е = 0,85 + 1,21 = 2,06 В => ЭДС разряженного аккумулятора при отключенной нагрузке мало отличается от ЭДС заряженного аккумулятора. При заряде аккумулятора, его напряжение заряда составляет 2,3 – 2,8 В. Напряжение разряда составляет примерно 1,8 В.

Емкость свинцового аккумулятора

Номинальная емкость определяется при десятичасовом разряде до напряжения 1,8 В, при температуре электролита 25°С. Номинальная емкость свинцового аккумулятора составляет 36 А/ч. Этой емкости соответствует ток разряда I Р = Q/10 = 3,6 А.

Если изменить ток разряда I Р и температуру электролита, то изменится и его емкость. Повышение температуры окружающей среды способствует повышению емкости, но при температуре 40°С происходит коробление положительных пластин и резко увеличивается саморазряд аккумулятора, поэтому для нормальной эксплуатации аккумулятора должна поддерживаться температура + 35°С – 15°С.

Номинальная емкость при температуре 25°С и десятичасовом разряде определяется формулой:

где P t – коэффициент использования активной массы аккумулятора, %;

Т – фактическая температура электролита при разряде.

Типы кислотно – свинцовых аккумуляторов

Стационарные аккумуляторы маркируются буквами С, СК, СЗ, СЗЭ, СН и другими:

С – стационарный аккумулятор;

К – аккумулятор, допускающий кратковременный разряд;

З – аккумулятор в закрытом исполнении;

Э – эбонитовый сосуд;

Н – аккумулятор с намазанными пластинами.

Число, которое ставится после буквенного обозначения, означает номер аккумулятора:

С-1 – 36 А/ч;

С-4 – 4 х 36 А/ч;

и другие...

Типы щелочных аккумуляторов

Маркировка Н–Ж (Никель – Железо), Н–К (Никель – Кадмий), С – Ц (Серебро – Цинк). Электродвижущая сила (ЭДС) Н–Ж аккумуляторов составляет: E З = 1,5 В; E Р = 1,3 В. ЭДС Н–К аккумуляторов составляет: E З = 1,4 В; E Р = 1,27 В. Среднее напряжение заряда составляет U З = 1,8 В; разряда U Р = 1 В.

СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ

Общие положения

Питание стационарной аппаратуры автоматики и связи на же­лезнодорожном транспорте осуществляется от источников посто­янного тока с номинальными напряжениями, например, 24, 60, 220 В и др. Источники с номинальным напряжением 24 В ис­пользуют для питания аппаратуры на транзисторах, цепей сигна­лизации, релейных схем автоматики и др.; источники с номи­нальным напряжением 60 В - для автоматических телефонных стан­ций, телеграфной коммутационной аппаратуры; источники с на­пряжением 220 В - для питания аппаратуры связи, двигателей стре­лочных переводов и т.д. Источники тока, имеющие определенное номинальное напряжение, обычно выполняют в виде самостоятель­ного оборудования, входящего в общий комплекс электропитающей установки дома связи, поста ЭЦ или другого объекта, где раз­мещены централизованные источники электропитания.

К основным системам электропитания относятся автономная, буферная, безаккумуляторная и комбинированная системы питания (рис. 2.1). Автономная система предназначена для питания пере­носной и стационарной аппаратуры автоматики и связи, а ос­тальные - для питания стационарной аппаратуры.

Рис. 2.1. Структурная схема систем электропитания

Автономная система питания

Систему питания от первичных элементов в основном исполь­зуют для обеспечения работы переносной аппаратуры (радиостан­ций, измерительной аппаратуры и др.). Для питания стационарной аппаратуры автономную систему питания применяют в местах, где отсутствуют сети переменного тока. Система питания от акку­муляторов по способу «заряд-разряд» (рис. 2.2) предназначена для случаев, когда энергия от сетей переменного тока подается не­регулярно. Сущность этого способа питания заключается в том, что для каждой градации напряжения имеется отдельный выпрямитель и две (или более) аккумуляторные батареи . От одной батареи питается аппаратура, а другая заряжается от выпрямителя или находится в резерве заряженной. Как только батарея разрядится до определенного состояния, ее отключают и подсоединяют к выпрямителю для заряда, а для питания аппаратуры подключают заряженную батарею. При работе по этому способу аккумуляторы чаще всего заряжаются в режиме неизменяющегося тока. Емкость аккумуляторов определяется ис­ходя из продолжительности питания аппаратуры в течение 12 -24 ч, поэтому аккумуляторные батареи очень громоздкие и для их установки требуются специально оборудованные помещения боль­ших размеров. Срок службы таких аккумуляторов 6-7 лет, так как глубокие и частые циклы заряда и разряда приводят к быстрому разрушению пластин. Необходимость постоянного наблюдения за процессами заряда и разряда приводит к большим эксплуата­ционным расходам.

Рис.2.2. Схема системы питания от аккумуляторов по способу «заряд – разряд»:

Ф – фидер; ШПТ – шина переменного тока; ЗШ – зарядные шины; РШ–рязрядные шины; 1, 2, 3 – группы аккумуляторов

Перечисленные недостатки наряду с низким к. п. д. установки (30-45%) ограничивают использование этого режима. К достоинст­вам способа относятся отсутствие пульсации напряжения на на­грузке и возможность использования для заряда различных ис­точников тока.

Буферная система питания

При такой системе питания параллельно выпрямителю UZ и нагрузке включена аккумуляторная батарея GB (рис. 2.3). В случае аварии в сети переменного тока или повреждения выпрямителя дальнейшее питание нагрузки обеспечивает батарея без перерыва в подаче энергии. Аккумуляторная батарея обеспечивает надежное резервирование источников электрической энергии, и, кроме того, она совместно с фильтром питания осуществляет необходимое сглаживание пульсации. При буферной системе питания различают три режима работы: среднего тока, импульсного и непрерывного подзаряда.

При режиме среднего тока (рис. 2.4) выпрямитель UZ, вклю­ченный параллельно с аккумуляторной батареей GВ, обеспечивает постоянный ток I в независимо от изменения тока I н в нагрузке R н. Когда ток нагрузки I н мал, выпрямитель питает нагрузку и за­ряжает аккумуляторную батарею током I 3 , а когда ток нагрузки велик, выпрямитель совместно с батареей, которая разряжается током I р, питает нагрузку. Во время заряда напряжение на каждом аккумуляторе батареи увеличивается и может достигать 2,7 В, а во время разряда уменьшается до 2 В. Для осуществления данного режима могут быть использованы простейшие выпрямители без устройств автоматической регулировки. Ток выпрямителя рассчи­тывают исходя из количества электрической энергии (ампер-часы), затрачиваемой на питание нагрузки в течение суток. Это значение должно быть увеличено на 15-25% для компенсации потерь, ко­торые всегда существуют при заряде и разряде аккумуляторов .

К недостаткам режима относятся: невозможность точно опре­делить и установить необходимый ток выпрямителя, так как дей­ствительный характер изменения тока нагрузки никогда точно неизвестен, что приводит к недозаряду или перезаряду аккуму­ляторов; небольшой срок службы аккумуляторов (8-9 лет), вызы­ваемый глубокими циклами заряда и разряда; значительные коле­бания напряжения на нагрузке, так как напряжение на каждом аккумуляторе может изменяться от 2 до 2,7 В.

При режиме импульсного подзаряда (рис. 2.5) ток выпрямителя изменяется скачкообразно в зависимости от напряжения на акку­муляторной батарее GВ. При этом выпрямитель UZ обеспечивает питание нагрузки R н совместно с батареей GВ или питает нагрузку

Рисунок 2.3 – Схема буферной системы питания

Рисунок 2.4 – Режим среднего тока:

а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени; I З и I Р – соответственно токи заряда и разряда аккумуляторной батареи

Рисунок 2.5 – Режим импульсного подзаряда:

а – схема; б – диаграмма токов и напряжений; в, г – зависимости токов и напряжений от времени

и подзаряжает батарею. Максимальный ток выпрямителя устанавливают несколько больше тока, имеющего место в час наибольшей нагрузки, а минимальный ток нагрузки I В max - меньше минимального тока нагрузки I н.

Предположим, что в исходном положении выпрямитель отдает минимальный ток. Батарея аккумуляторов разряжается, и напря­жение на ней падает до 2,1 В на элемент. Реле Р отпускает якорь и контактами шунтирует резисторR. Ток на выходе выпрямителя возрастает скачкообразно до максимального. С этого момента вы­прямитель питает нагрузку и заряжает батарею. В процессе заряда напряжение на аккумуляторной батарее увеличивается и достигает 2,3 В на элемент. Вновь срабатывает реле Р, и ток выпрямителя падает до минимального; батарея начинает разряжаться. Далее циклы повторяются. Длительность интервалов времени максималь­ного и минимального тока выпрямителя изменяется в соответствии с изменением тока в нагрузке.

К достоинствам режима относятся: простота системы регули­рования тока на выходе выпрямителя; небольшие пределы изме­нения напряжения на аккумуляторной батарее и на нагрузке (от 2,1 до 2,3 В на элемент); увеличение срока службы аккумуляторов до 10-12 лет в связи с менее глубокими циклами заряда и разряда. Этот режим используют для питания устройств автоматики.

При режиме непрерывного подзаряда (рис. 2.6) нагрузка R н пи­тается полностью от выпрямителя UZ. Заряженная аккумуляторная батарея получает от выпрямителя небольшой постоянный ток подзаряда, компенсирующий саморазряд. Для осуществления ука­занного режима необходимо на выходе выпрямителя установить напряжение из расчета (2,2 ± 0,05) В на каждый аккумулятор и поддерживать его с погрешностью не более ±2%. При этом ток подзаряда для кислотных аккумуляторов I п = (0,001-0,002) С н и для щелочных аккумуляторов I п = 0,01С Н. Следовательно, для вы-

Рисунок 2.6 – Режим непрерывного подзаряда:

а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени

полнения этого режима выпрямители должны иметь точные и надежные устройства стабилизации напряжения. Невыполнение этого требования приводит к перезаряду аккумуляторов или к их глубокому разряду и сульфатации.

К достоинствам режима относится: достаточно высокий к. п. д. установки, определяемый только выпрямителем (η = 0,7÷0,8); большой срок службы аккумуляторов, достигающий 18-20 лет благодаря отсутствию циклов заряда и разряда; высокая стабиль­ность напряжения на выходе выпрямительного устройства; умень­шение эксплуатационных расходов благодаря возможности автома­тизации и упрощению обслуживания аккумуляторов.

Нормально аккумуляторы находятся в заряженном состоянии и не требуют непрерывного наблюдения. Отсутствие циклов заряда и разряда и правильно выбранный ток подзаряда уменьшают сульфатацию и позволяют увеличить периоды между перезарядами и контрольными разрядами.

Недостатком режима является необходимость усложнения пи­тающих устройств за счет элементов стабилизации и автомати­зации. Режим используют в устройствах для питания аппаратуры связи.

Аккумулятор - ЭДС аккумулятора - Электродвижущая сила

Эдс аккумулятора, не включенного на нагрузку, составляет в среднем 2 Вольта. Она не зависит от величины аккумулятора и размера его пластин, а определяется различием активных веществ положительных и отрицательных пластин.
В небольших пределах эдс может изменяться от внешних факторов, из которых практическое значение имеет плотность электролита, т. е. большее или меньшее содержание кислоты в растворе.

Электродвижущая сила разряженного аккумулятора, имеющего электролит высокой плотности, будет больше эдс заряженного аккумулятора с более слабым раствором кислоты. Поэтому о степени заряда аккумулятора с неизвестной начальной плотностью раствора не следует судить на основании показаний прибора при измерении эдс без подключенной нагрузки.
Аккумуляторы имеют внутреннее сопротивление, которое не остается постоянным, а изменяется во время заряда и разряда в зависимости от химического состава активных веществ. Одним самым очевидным фактором сопротивления батареи является электролит. Поскольку сопротивление электролита зависит не только от его концентрации, но и от температуры, то и сопротивление аккумулятора зависит от температуры электролита. С увеличением температуры сопротивление уменьшается.
Наличие сепараторов также повышает внутренней сопротивление элементов.
Другим фактором, увеличивающим сопротивление элементов, является сопротивление активного материала и решеток. Кроме того, на сопротивление аккумуляторной батареи влияет степень заряда. Сульфат свинца, образующийся во время разряда как на положительных, так и на отрицательных пластинах, не проводит электричества, и его присутствие значительно повышает сопротивление прохождению электрического тока. Сульфат закрывает поры пластин, когда последние находятся в заряженном состоянии, и таким образом препятствует свободному доступу электролита к активному материалу. Поэтому, когда элемент заряжен, сопротивление его оказывается меньше, чем в разряженном состоянии.

Аккумуляторные батареи заполнены серной кислотой и в процессе нормального цикла заряда-разряда в них выделяются взрывоопасные газы (водород и кислород). Во избежание травмирования персонала или повреждения автомобиля неукоснительно соблюдайте следующие правила техники безопасности:

  1. Перед тем как приступать к работе с любыми электрическими компонентами автомобиля, отсоедините кабель питания от минусовой клеммы аккумулятора. При отсоединенном минусовом кабеле питания все электрические цепи в автомобиле будут разомкнуты, что обеспечит предотвращение случайного замыкания любого электрического компонента на массу. Электрическая искра создает потенциальную опасность травмирования и возникновения возгорания.
  2. Любые работы, связанные с аккумуляторной батареей, должны выполняться в защитных очках.
  3. Для защиты от попадания серной кислоты, которой заполнена аккумуляторная батарея, на кожу используйте защитную одежду.
  4. Не нарушайте указанных в процедурах технического обслуживания правил техники безопасности при обращении с оборудованием, используемым для технического обслуживания и испытания аккумуляторных батарей.
  5. Категорически запрещается курить или использовать открытый огонь в непосредственной близости от аккумуляторной батареи.

Текущее обслуживание аккумуляторной батареи

Текущее техническое обслуживание аккумуляторной батареи заключается в проверке чистоты корпуса аккумуляторной батареи и, при необходимости, добавлении в нее чистой воды. Все производители аккумуляторных батарей рекомендуют использовать для этой цели дистиллированную воду, но в случае ее отсутствия можно использовать чистую питьевую воду с низким содержанием солей. Поскольку вода - это единственный расходуемый компонент аккумуляторной батареи, доливать в аккумуляторную батарею кислоту не допускается. Часть воды из электролита улетучивается в процессе заряда и разряда аккумуляторной батареи, но кислота, содержащаяся в электролите, остается в аккумуляторной батарее. Не переполняйте аккумуляторную батарею электролитом, потому что в таком случае нормальный барботаж (газообразование), возникающий в электролите в процессе работы аккумуляторной батареи, приведет к утечке электролита, вызывающей коррозию клемм аккумуляторной батареи,ее кронштейнов крепления и поддона. Аккумуляторные батареи следует заполнять электролитом до уровня примерно на полтора дюйма (3,8 см) ниже верха заливной горловины.

Контакты кабелей питания, подключаемых к аккумуляторной батарее, и клеммы самой аккумуляторной батареи необходимо осмотреть и очистить во избежание падения напряжения на них. Одной из распространенных причин того, что двигатель не заводится, является ослабление или коррозия контактов кабелей питания, подсоединенных к клеммам аккумуляторной батареи.

Рис. Сильно корродированная клемма аккумуляторной батареи

Рис. Было обнаружено, что этот кабель питания, подсоединенный к аккумуляторной батарее, сильно корродирован под изоляцией. Хотя коррозия насквозь разъела изоляцию, но оставалась незамеченной до тех пор, пока кабель не был тщательно осмотрен. Этот кабель подлежит замене

Рис. Тщательно проверьте все клеммы аккумуляторной батареи на наличие признаков коррозии. В этом автомобиле два кабеля питания присоединены к плюсовой клемме аккумуляторной батареи с помощью длинного болта. Это - распространенная причина коррозии, которая вызывает нарушение электрического пуска двигателя

Измерение ЭДС аккумуляторной батареи

Электродвижущая сила (ЭДС) — это разность потенциалов положительного и отрицательного электродов аккумулятора при разомкнутой внешней цепи.

Величина ЭДС зависит, главным образом, от электродных потенциалов, т.е. от физических и химических свойств веществ, из которых изготовлены пластины и электролит, но не зависит от размеров пластин аккумулятора. ЭДС кислотного аккумулятора зависит также от плотности электролита.

Измерение электродвижущей силы (ЭДС) аккумуляторной батареи с помощью вольтметра является простым способом определения степени ее заряженности. ЭДС аккумуляторной батареи не является показателем, который гарантирует работоспособность аккумуляторной батареи, но этот параметр полнее характеризует состояние аккумуляторной батареи, чем просто ее осмотр. Аккумуляторная батарея, которая по внешнему виду вполне работоспособна, на самом деле может оказаться не такой хорошей, как кажется.

Эта проверка называется измерением напряжения в режиме холостого хода (проверкой ЭДС) аккумуляторной батареи потому, что измерение проводится на клеммах аккумуляторной батареи без подключенной к ней нагрузки, при нулевом токе потребления.

  1. Если проверка производится сразу же по окончании зарядки аккумуляторной батареи или в автомобиле по окончании поездки, перед измерением необходимо освободить аккумуляторную батарею от ЭДС поляризации. ЭДС поляризации - это повышенное, по сравнению с нормальным, напряжение, которое возникает только на поверхности аккумуляторных пластин. ЭДС поляризации быстро исчезает, когда аккумуляторная работает под нагрузкой, поэтому она не дает точной оценки степени заряженности аккумуляторной батареи.
  2. Для освобождения аккумуляторной батареи от ЭДС поляризации включите фары в режим дальнего света на одну минуту, а затем, выключите их и подождите пару минут.
  3. При выключенном двигателе и всем остальном электрооборудовании, при закрытых дверях (чтобы был выключен свет в салоне), подключите вольтметр к клеммам аккумуляторной батареи. Красный, плюсовой, провод вольтметра подсоедините к плюсовой клемме аккумуляторной батареи, а черный, минусовой, провод - к ее минусовой клемме.
  4. Зафиксируйте показание вольтметра и сравни те его с таблицей степени заряженности аккумуляторной батареи. Приведенная ниже таблица подходит для оценки степени заряженности аккумуляторной батареи по величине ЭДС при комнатной температуре - от 70°Ф до 80°Ф (от 21 °С до 27°С).

Таблица

ЭДС аккумуляторной батареи (В) Степень заряженности
12,6 В и выше Заряжена на 100%
12,4 Заряжена на 75%
12,2 Заряжена на 50%
12 Заряжена на 25%
11,9 и ниже Разряжена

Рис. Вольтметр показывает напряжение аккумуляторной батареи через одну минуту после включения фар (а). После выключения фар напряжение, измеренное на аккумуляторной батарее, быстро восстановилось до 12,6 В (б)

ПРИМЕЧАНИЕ

Если вольтметр выдает отрицательное показание, то, либо аккумуляторная батарея заряжена в обратной полярности (и тогда подлежит замене), либо вольтметр подключен к аккумуляторной батарее в обратной полярности.

Измерение напряжения аккумуляторной батареи под нагрузкой

Одним из наиболее точных способов определения работоспособности аккумуляторной батареи является измерение напряжения аккумуляторной батареи под нагрузкой. В большинстве тестеров пусковых и зарядных характеристик автомобильных аккумуляторных батарей в качестве нагрузки аккумуляторной батареи используется угольный реостат. Параметры нагрузки определяются номинальной емкостью проверяемой аккумуляторной батареи. Номинальная емкость аккумуляторной батареи характеризуется величиной пускового тока, который способна обеспечить аккумуляторная батарея при температуре 0°Ф (-18°С) в течение 30 секунд. Ранее использовалась характеристика номинальной емкости аккумуляторных батарей в ампер-часах. Измерение напряжения аккумуляторной батареи под нагрузкой производится при величине разрядного тока, равной половине номинального ССА тока аккумуляторной батареи или утроенной номинальной емкости аккумуляторной батареи в ампер-часах, но не менее 250 ампер. Измерение напряжения аккумуляторной батареи под нагрузкой производится после проверки степени ее заряженности по встроенному ареометру или путем измерения ЭДС аккумуляторной батареи. Аккумуляторная батарея должна быть заряжена не менее чем на 75%. К аккумуляторной батарее подключают соответствующую нагрузку и по истечении 15 секунд работы аккумуляторной батареи под нагрузкой фиксируют показания вольтметра при подключенной нагрузке. Если аккумуляторная батарея - хорошая, то показание вольтметра должны оставаться выше 9,6 В. Многие производители аккумуляторных батарей рекомендуют проводить измерение дважды:

  • первые 15 секунд работы аккумуляторной батареи под нагрузкой используются для освобождения от ЭДС поляризации
  • вторые 15 секунд - для получения более достоверной оценки состояния аккумуляторной батареи

Между первым и вторым циклом работы под нагрузкой необходимо сделать выдержку в 30 секунд, чтобы дать аккумуляторной батарее время на восстановление.

Рис. Тестер пусковых и зарядных характеристик автомобильных аккумуляторных батарей, выпущенный компанией Bear Automotive, автоматически включает проверяемую аккумуляторную батарею в режим работы под нагрузкой в течение 15 секунд - для удаления ЭДС поляризации, затем отключает нагрузку на 30 секунд для восстановления аккумуляторной батареи и снова подключает нагрузку на 15 секунд. На дисплей тестера выводится информация о состоянии аккумуляторной батареи

Рис. Тестер VAT 40 (вольтамперметр, модель 40) компании Sun Electric, подключенный к аккумуляторной батарее для испытаний под нагрузкой. Оператор с помощью регулятора тока нагрузки устанавливает по показанию амперметра величину тока разряда, равную половине номинального ССА тока аккумуляторной батареи. Аккумуляторная батарея работает под нагрузкой в течение 15 секунд и по окончании этого интервала времени напряжение аккумуляторной батареи, измеренное при подключенной нагрузке, должно быть не ниже 9,6 В

ПРИМЕЧАНИЕ

Некоторые тестеры для определения степени заряженности и работоспособности аккумуляторной батареи измеряют емкость аккумуляторной батареи. Соблюдайте процедуру проверки, установленную производителем испытательного оборудования.

Если аккумуляторная батарея не прошла испытания под нагрузкой, подзарядите ее и повторите проверку. В случае если вторая проверка закончилась неудачно, аккумуляторная батарея подлежит замене.

Зарядка аккумуляторной батареи

Если аккумуляторная батарея сильно разряжена, ее необходимо подзарядить. Зарядку аккумуляторной батареи, во избежание ее повреждения вследствие перегрева, лучше всего производить в стандартном режиме зарядки. Пояснения, касающиеся стандартного режима зарядки аккумуляторной батареи, приведены на рисунке.

Рис. Это устройство для зарядки аккумуляторных батарей отрегулировано на зарядку аккумуляторной батареи номинальным зарядным током 10 А. Зарядка аккумуляторной батареи в стандартном режиме, как на приведенной фотографии, не так сильно действует на аккумуляторную батарею, как режим ускоренной зарядки, в котором не исключается перегрев аккумуляторной батареи и коробление аккумуляторных пластин

Необходимо помнить о том, что для зарядки полностью разряженной аккумуляторной батареи может потребоваться часов восемь, а то и более. Первоначально необходимо в течение 30 минут поддерживать зарядный ток на уровне около 35 А - для того, чтобы облегчить начало процесса зарядки аккумуляторной батареи. В режиме ускоренной зарядки аккумуляторной батареи происходит ее усиленный нагрев и возрастает опасность коробления аккумуляторных пластин. В режиме ускоренной зарядки происходит также усиленное газообразование (выделение водорода и кислорода), что создает опасность для здоровья и опасность возгорания. Температура аккумуляторной батареи не должна выходить за пределы 125°Ф (52°С, аккумуляторная батарея - горячая на ощупь). Зарядку аккумуляторных батарей рекомендуется, как правило, производить зарядным током, равным 1% паспортного значения ССА-тока.

  • Режим ускоренной зарядки — максимум 15 А
  • Стандартный режим зарядки — максимум 5 А

Это может произойти с каждым!

Владелец автомобиля Toyota отключил аккумуляторную батарею. После подключения новой аккумуляторной батареи владелец заметил, что на приборной панели загорелась желтая лампочка сигнализации «подушка безопасности», а радиоприемник заблокировался. Владелец приобрел подержанный автомобиль у дилера и не знал секретного четырехзначного кода, необходимого для разблокирования радиоприемника. Вынужденный искать способ решения этой проблемы, он наугад попробовал ввести три разных четырехзначных числа в надежде, что одно из них подойдет. Однако после трех неудачных попыток радиоприемник полностью отключился.

Расстроенный владелец обратился к дилеру. Устранение возникшей проблемы обошлось более чем в триста долларов. Для сброса сигнализации «подушка безопасности» потребовался специальный прибор. Радиоприемник пришлось вынуть из автомобиля и отослать в другой штат, в авторизованный сервисный центр, а по возвращении заново установить в автомобиле.

Поэтому, прежде чем отключать аккумуляторную батарею, обязательно согласуйте это с владельцем автомобиля - вы должны убедиться в том, что владельцу известен секретный код включения закодированного радиоприемника, который одновременно используется в системе охраны автомобиля. Может потребоваться использование устройства резервного питания памяти радиоприемника при отключенной аккумуляторной батарее.

Рис. Вот удачная мысль. Техник сделал источник резервного питания памяти из старого аккумуляторного фонарика и кабеля с переходником к гнезду прикуривателя. Он просто подсоединил провода к выводам аккумулятора имевшегося у него аккумуляторного фонарика. Аккумулятор фонарика использовать удобней, чем обычную 9-вольтовую батарейку - на случай, если кому-то придет в голову открыть дверь автомобиля в то время, когда источник резервного питания памяти будет включен в цепь. 9-вольтовая батарейка, имеющая небольшую емкость, в этом случае быстро бы разрядилась, в то время как емкость аккумулятора фонарика достаточно велика и ее хватит на то, чтобы даже при включении освещения салона обеспечить необходимое питание памяти



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»